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Abstract

Honeycomb-cored sandwich structures are widely used in transport for their
high strength-to-mass ratio. Their inherent high stiffness and lightweight prop-
erties make them prone to high vibration cycles which can incur deleterious
damage to transport vehicles. This PhD thesis investigates the performance of
a novel passive damping treatment for honeycomb-cored sandwich structures,
namely the Double Shear Lap-Joint (DSLJ) damper. It consists of a passive
damping construct which constrains a viscoelastic polymer in shear, thus dissi-
pating vibrational energy. A finite element model of such DSLJ damper inserted
in the void of a hexagonal honeycomb cell is proposed and compared against
a simplified analytical model. The damping efficiency of the DSLJ damper in
sandwich beams and plates is benchmarked against that of the Constrained
Layer Damper (CLD), a commonly used passive damping treatment. The DSLJ
damper is capable of achieving a higher damping for a smaller additional mass
in the host structure compared to the optimised CLD solutions found in the
literature. The location and orientation of DSLJ inserts in honeycomb sandwich
plates are then optimised with the objective of damping the first two modes
using a simple parametric approach. This method is simple and quick but is
not robust enough to account for mode veering occurring during the optimisa-
tion process. A more complex and computationally demanding evolutionary
algorithm is subsequently adopted to identify optimal configurations of DSLJ
in honeycomb sandwich plates. Some alterations to the original algorithm are
successfully implemented for this optimisation problem in an effort to increase
the convergence rate of the optimisation process. The optimised designs iden-
tified are manufactured and the modal tests carried out show an acceptable
correlation in the trends identified by the numerical simulations, both in terms of
damping per added mass and natural frequencies.
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Chapter 1

Introduction

1.1 Context and motivation

The globalisation of our world has led to an increasing demand for transport
technologies, requiring faster and safer vehicles able to carry heavier freight
over a longer distance. In a report published in June 2015, the International Air
Transport Association announced a 60% and 42% increase in the number of
passengers and freight mass respectively between 2004 and 2014 [14]. Such an
important increase requires the need for higher energy consumption combined
with more efficient engines to convert this energy into motion. However, the vast
majority of expenditure in commercial transport lies in fuel consumption. The
global airline industry’s fuel expenses are estimated to total $226 billion in 2014
(against $44 billion in 2003). An increase in fuel consumption also comes at the
expense of adverse effects on the environment. Air transport accounts for 2% of
global man-made CO2 emissions [14]. Reducing the mass of an aircraft by 100
kg prevents releasing about four tons of CO2 into the atmosphere each year [14].
Therefore, much effort has been spent in reducing the mass of structural
components of transport vehicles without compromising their structural integrity.
In many cases, sandwich panels have been found to be a very good compromise
between high stiffness and low weight, and they have been extensively used as
structural elements in the aerospace, marine and automotive sectors [15]. For
instance, components of the nacelle of a jet engine or the wing leading edge of
an aircraft are often made as a sandwich construction, see Figure 1.1. Because
of their application in transport, these structures tend to experience high levels
of dynamic loading. If a system is excited with a forcing frequency corresponding
to one of its modal frequencies, it may enter into resonance, which may lead to
high vibration amplitudes and instability in the system. Slender and lightweight
structures – driven by economic pressures – are also more easily excited than
heavier and sturdier designs. Vibrations are usually undesirable in a structure
because they tend to (i) increase stresses in components reducing their service
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life, (ii) induce wear and high cycle fatigue leading to more frequent service
intervals and maintenance, (iii) cause energy losses affecting the efficiency
of the system, (iv) create passenger discomfort. Much effort has been made
to mitigate the deleterious effects of vibrations in order to improve reliability,
safety and passenger comfort in transport. Numerous techniques and methods
to damp vibration in a system have been developed over the years, including
the commonly used Constrained Layer Damper (CLD). The work described in
this thesis concerns efforts to damp vibration by passive means in lightweight
honeycomb sandwich structures.

Figure 1.1: Structure of the wing leading edge of an aircraft. Adapted from [1].

1.2 Thesis objectives and outline

The purpose of this thesis is to investigate the application of passive damping
to honeycomb-cored sandwich constructions with a minimal increase in the
structure’s mass. It focuses on the Double Shear Lap-Joint (DSLJ) damper
technology discovered and patented by Boucher et al. in 2013 [16]. It is a
lightweight damping device characterised by a novel passive damping mecha-
nism. Attention is focused on the performance of the DSLJ damper in terms
of damping produced per unit of added mass to the system. This thesis is
structured as follows.
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1.2. THESIS OBJECTIVES AND OUTLINE

The second chapter provides the reader with the necessary technical back-
ground for understanding the work in this thesis. The literature to date on
passive vibration damping in lightweight sandwich structures will be reviewed.
This chapter also introduces the key concepts of passive vibration damping
analysed with the finite element method. It includes the derivation of the gov-
erning equations of a damped system and their solution for free and forced
vibration.

Chapter 3 introduces the numerical models used in the subsequent chapters
of this thesis. An analytical model of a DSLJ in a hexagonal honeycomb cell is
derived and compared to its equivalent finite element model. The mode shapes
and natural frequencies of the sandwich beam and plate geometries considered
later in the thesis are also computed.

In Chapter 4, the damping performance of the DSLJ damper is compared to
that of the traditional CLD, both in terms of modal loss factors and added mass.
The damping efficiency (i.e. modal loss factor per unit mass) of optimised CLD
solutions is benchmarked against that of the DSLJ damper placed at a strategic
location on a sandwich structure.

In Chapter 5, the optimal location and orientation of DSLJ dampers are
determined for a honeycomb sandwich plate under various boundary conditions.
A parametric approach based on the modal strain distribution in the system
is used to identified lightweight designs that maximise damping in the first or
second mode.

A more complex and robust method – able to account for the effects of mode
veering occurring during the optimisation process – is implemented in Chapter
6. The evolutionary algorithm implemented determined superior configurations
to those identified by the earlier parametric approach.

The vibration testing of honeycomb-cored sandwich panels treated with
optimised DSLJ and CLD configurations is conducted in Chapter 7. Trends in
the evolution of modal loss factors and modal frequencies between the damped
and undamped system are similar to those predicted numerically.

Finally, Chapter 8 discusses the findings of the study, concludes the thesis
and provides the reader with some recommendations for further research.
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Chapter 2

Background of the study

2.1 Introduction

Vibration damping in sandwich structures is a vast field of research dating
back to the early fifties. This chapter provides the reader with a review of
the literature to date, focusing on passive damping techniques for lightweight
sandwich structures. It also introduces the main physical concepts involved in
studying this phenomenon, including finite element vibration analysis.

2.2 Sandwich structure

A sandwich structure is composed of two stiff skins bonded by an adhesive
onto a lightweight core, typically a cellular solid [17] as illustrated in Figure 2.1.
These structures exhibit excellent density specific properties combined with a
high bending stiffness and strength and high resistance to impact compared to
a homogeneous structure. Because of the separation of the two sheets by the
core, the moment of inertia of the panel is increased. Thus, the structure can
efficiently resist bending and buckling loads, with little increase in weight [17].
The relative weight and flexural stiffness and strength of a sandwich structure
can be found in Table 2.1. In a sandwich panel, the bending moments are car-
ried mostly by the skins in the form of tensile and compressive stress whereas
the transverse forces are mainly carried by the core, see Figure 2.2. Such
mechanical properties are greatly appreciated in the transport industry, and as
a result, sandwich constructions have increasingly been used in aerospace for
more than fifty years [15]. Sandwich structures are also widely found in nature,
for example in the human skull or the wing of a bird. Since the core and the
skins carry different types of loading, they are usually designed with different
architectures and constitutive materials. Cellular solids are widely used as
sandwich core materials in transport and other industries, even though they are
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Figure 2.1: A honeycomb core sandwich panel. Adapted from [2].

Relative
weight

Relative
bending
stiffness

Relative
bending
strength

t

1 1 1

2t
t/2

1.03 7.0 3.5

t/2

4t

1.06 37.0 9.2

Table 2.1: Relative weight, bending stiffness and bending strength of sandwich
panels compared to a homogeneous solid material [3].

more expensive to manufacture than traditional materials [18]. Cellular solids
are a class of materials made of solid struts or plates which form a network of
interconnected cells [17] and have a low relative density compared to that of
their constituent material. Cellular solids can be classified by their pore type.
If the cell’s faces are solid so that fluid communication is not allowed between
the cells, the cellular solid is said to be closed-cell. If only the cell edges are
solid, i.e. fluids can flow between cells, a cellular solid is said to be open-cell.
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(a)

(b)

Figure 2.2: The stress distribution in a homogeneous panel (a) and a sandwich
panel (b). Adapted from [3].

Cellular solids can also be classified according to their variability in cell size.
Stochastic cellular solids are characterised by a disordered distribution of cell
sizes, rib lengths and angles, and node coordination (connectivity between
neighbouring ribs). The most common type of stochastic cellular solids are
foams, which are three-dimensional cellular solids usually formed via a surface
energy minimisation process, leaving either open cells or closed pores depend-
ing how much minimisation is allowed to occur. Deterministic cellular solids
possess periodically ordered architectures, formed by a systematic process in
which each cell is shaped. Examples include honeycombs, prismatic corrugated
architecture or lattice truss materials [17]. An illustration of the different classi-
fications of cells can be found in Figures 2.3 and 2.4. Stochastic foams have
different mechanical properties from deterministic cellular solids and thus have
different applications. They are better suited for acoustic attenuation and impact
energy absorption than deterministic cellular solids. However, honeycombs are
preferred over foams as core materials for sandwich panels for load-bearing
application. Indeed, they exhibit a superior strength and stiffness, but they are
also more expensive to manufacture [18]. Moreover, it is possible to optimise
the mechanical performance of periodic architectures by placing reinforcing
materials at strategic locations, which is not possible with foams [18]. In this
thesis, attention will be focused on honeycomb-cored sandwich structures. A
honeycomb can be defined as a two-dimensional array of prismatic cells [19]. It
is generally periodic and regular although the cell size distribution can be very
broad such as in the random Voronoi honeycomb. Typically, a honeycomb is
composed of hexagonal cells such as the bee’s honeycomb, but it can also be
made up of square or triangular or rhombic cells, as illustrated in Figure 2.5 [17].
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Figure 2.3: Closed (left) and open-cell (right) cellular structures. Adapted
from [4].

Figure 2.4: Stochastic (left) and deterministic (right) cell architecture. Adapted
from [4].

2.3 Finite element vibration Analysis

This section aims at providing the reader with an introduction to the finite
element analysis of vibrating systems necessary to the understanding of the
subsequent finite element model used in this thesis.

Vibration is a mechanical phenomenon in which a “system subjected to
restoring forces oscillates about an equilibrium point” [20]. Vibration is present
in any system with a mass and elasticity and thus most structures are subjected
to vibration to some extent [21]. Vibration is very often undesirable since it
represents a loss of energy, causes unwanted noise and increases damage
and fatigue in a mechanical device in operation by friction. It has therefore
been the subject of many analytical and numerical models in order to predict
the dynamic behaviour of a system. The degrees of freedom (d.o.f.) are the
number of independent coordinates required to describe the motion of a system.
Depending on its complexity, a system can be described with a finite or an
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Figure 2.5: Honeycomb-cored sandwich structures. Adapted from [5].

infinite number of degrees of freedom, i.e. a discrete or continuous system,
respectively. However, the analytical modelling of complex continuous systems
can very quickly become complicated. Therefore, numerical methods are used
for approximating the solution of many complex structural vibration problems.
The finite element method is a computationally effective numerical method for
modelling and evaluating the dynamic characteristics of a vibrating system.
Vibration can be classified into two groups: free vibration, when the system
oscillates without any external excitation other than an initial disturbance, or
forced vibration if the system is excited by an external force. If the value of
the external excitation acting on a system is known at any time and repeats
periodically, the excitation is said to be deterministic or periodic. Otherwise
the excitation is random. A deterministic excitation that varies sinusoidally with
time is said to be harmonic. If the system’s response is proportional to the
external excitations, the system is said to be linear. In this case, the motion of
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the system is harmonic and the principle of superposition can be used to solve
the governing equation. Vibrating systems become nonlinear as the amplitude
of oscillation increases [8]. The systems in this thesis will be considered linear
and subjected to harmonic excitations.

2.3.1 Governing equation

The governing equation of motion of a vibrating system is derived using the
principle of virtual displacements [6]. This principle states that “if a system
in equilibrium under the action of a set of forces is subjected to a virtual dis-
placement, the work done by externally applied loads (i.e. body forces, surface
traction and concentrated loads) must balance the work absorbed by the inertial,
dissipative and internal elastic forces.” [22]. A virtual displacement is a small
physically possible motion i.e. a displacement that satisfies compatibility with
the system’s boundary conditions. Note that the Hamilton’s principle or the
Lagrange equation can also be used to derive the equation of motion. In the
case of a linear elastic material, the principle of virtual displacements applied
to an element of volume V , mass density ρ, viscous damping coefficient c and
stiffness constant k gives:∫

V

(
{δu}Tρ{ü}+ {δu}T c{u̇}+ {δu}Tk{u}

)
dV =

∫
V

{δu}T{pext}dV (2.1)

where {u} is the displacement vector, {δu} is the virtual displacement vector
and {pext} is the vector of external forces applied to the element of volume. The
finite element discretisation gives:

{u} = [N ]{d}
{u̇} = [N ]{ḋ}
{ü} = [N ]{d̈}

{δu}T = {δd}T [N ]T

(2.2)

where {d} is the element nodal d.o.f. vector and [N ] is the element shape
function matrix. Substituting Equation 2.2 into Equation 2.1 yields:

{δd}T
∫
V

(
ρ[N ]T [N ]{d̈}+ c[N ]T [N ]{ḋ}+ k[N ]T [N ]{d}

)
dV

= {δd}T
∫
V

[N ]T{pext}dV (2.3)
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The element mass [m], damping [c] and stiffness [k] matrices and element
force vector {f ext} are defined as follows:

[m] =

∫
V

ρ[N ]T [N ]dV

[c] =

∫
V

c[N ]T [N ]dV

[k] =

∫
V

k[N ]T [N ]dV

{f ext} =

∫
V

[N ]T{pext}dV

(2.4)

Equation 2.3 then becomes:

[m]{d̈}+ [c]{ḋ}+ [k]{d} = {f ext} (2.5)

The premise of the finite element method is that the response of the global
system can be approximated by combining the contribution of each individual
element to the global response using the connectivity between elements, in
a process called assembly [23]. This assembly process can be illustrated by
considering a system of three 2-noded bar elements with one degree-of-freedom
per node. Let the element matrices be as follows,

[mi] =

[
mi,11 mi,12

mi,21 mi,22

]
[ci] =

[
ci,11 ci,12

ci,21 ci,22

]
[ki] =

[
ki,11 ki,12

ki,21 ki,22

]
(2.6)

where i is the element number. If the three bar elements 1, 2 and 3 are
connected in line, the global equation of motion would be assembled as follows,

m1,11 m1,12 0 0

m1,21 m1,22 +m2,11 m2,12 0

0 m2,21 m2,22 +m3,11 m3,12

0 0 m3,21 m3,22



d̈1

d̈2

d̈3

d̈4

+


c1,11 c1,12 0 0

c1,21 c1,22 + c2,11 c2,12 0

0 c2,21 c2,22 + c3,11 c3,12

0 0 c3,21 c3,22



ḋ1

ḋ2

ḋ3

ḋ4

+


k1,11 k1,12 0 0

k1,21 k1,22 + k2,11 k2,12 0

0 k2,21 k2,22 + k3,11 k3,12

0 0 k3,21 k3,22



d1

d2

d3

d4

 =


f1

f2

f3

f4

 (2.7)
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This assembly process is applied here to the local equations of motion
(Equation 2.5) in order to build the global equation of motion:

[M ]{D̈}+ [C]{Ḋ}+ [K]{D} = {F ext} (2.8)

where [M ], [C], [K] are the global mass, damping and stiffness matrices
respectively, {D} is the global nodal displacement vector and {F ext} is the
vector of external forces applied to the global system. Physically, this equation
means that the external forces applied to the system are in equilibrium with the
inertia, damping and elastic forces. It is analogous to Newton’s second law,∑
F = ma. The global matrices can be regarded as a discrete representation

of a continuous mass, damping and stiffness distribution. They are symmetric
and positive definite but not diagonal, which makes Equation 2.8 a system
of coupled, second order ordinary differential equations. This system cannot
be solved easily under its present form and needs to be uncoupled as will be
explained later.

2.3.2 Modal analysis - Free vibrations

The modal analysis of a continuous system consists in determining its natural
frequencies and mode shapes. The undamped system is considered in free
vibration, i.e. [C] = 0 and {F ext} = 0. Equation 2.8 becomes:

[M ]{D̈}+ [K]{D} = 0 (2.9)

When the system is linear, vibratory motions are harmonic i.e. the nodal
displacements follow a sinusoidal motion varying with time at a frequency ω and
amplitude {Φ}. The solution of Equation 2.9 can thus be assumed to be of the
following form:

{Di} = {Φi}ejωit (2.10)

Substituting Equation 2.10 into 2.9 yields the generalised eigenproblem:

([K]− ω2
i [M ]){Φi} = {0} (2.11)

where λi = ω2
i is the ith eigenvalue, ωi is the natural frequency of mode i

and {Φi} is the ith eigenvector or mode shape. Equation 2.11 can be written
as [K]{Φi} = ω2

i [M ]{Φi}. Physically, it means that a vibration mode can be
considered as a system where elastic and inertia loads are in equilibrium.
There are a large number of numerical methods for solving the eigenproblem
and extracting the eigenpairs. Here, the iterative preconditioned conjugate
gradient Lanczsos eigensolver will be used to extract the eigenmodes and
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eigenfrequencies [6]. Pre-multiplying the eigenproblem 2.11 by {Φi}T , the
Rayleigh quotient can be defined as follows,

ω2
i =
{Φi}T [K]{Φi}
{Φi}T [M ]{Φi}

(2.12)

2.3.3 Response history

In order to determine the response history of the system (i.e. the nodal displace-
ment vector {D}), Equation of motion 2.8 is solved for a given loading {F ext}.
Since the mass, damping and stiffness matrices are symmetric and positive
definite, this equation constitutes a system of coupled differential equations.
The mode superposition method is used to uncouple the system which can
then be solved easily. The nodal displacement vector can be defined as a linear
combination of eigenvectors:

{D} =
n∑
i=1

zi{Φi} (2.13)

where zi are the modal (or generalised) coordinates and n is the number of
degrees of freedom in the finite element model. In practice and for reasons of
computational efficiency, a reduced number of modes m� n is used such that:

{D} ≈
m∑
i=1

zi{Φi} (2.14)

By substituting Equation 2.14 into Equation 2.8 and pre-multiplying by a typical
mode shape {Φk}T , we obtain the following system of equations:

m∑
i=1

{Φk}T [M ]{Φi}z̈i +
m∑
i=1

{Φk}T [C]{Φi}żi +
m∑
i=1

{Φk}T [K]{Φi}zi = {Φk}T{F ext}

(2.15)
It can be shown that the eigenvectors are orthogonal with respect to the stiffness
and the mass matrices,

∀i 6= k {Φk}T [K]{Φi} = 0

{Φk}T [M ]{Φi} = 0
(2.16)

The governing equation can only be uncoupled and therefore solved if the
non-diagonal terms of the system are equal to zero. Therefore,

∀i 6= k {Φk}T [C]{Φi} = 0 (2.17)
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Substituting Equations 2.16 and 2.17 into Equation 2.15, one can obtain:

{Φk}T [M ]{Φk}z̈k +{Φk}T [C]{Φk}żk +{Φk}T [K]{Φk}zk = {Φk}T{F ext} (2.18)

If the mode shapes are normalised to the mass matrix, we have:

{Φk}T [M ]{Φk} = 1 (2.19)

Substituting this equation in the Rayleigh quotient (Equation 2.12) gives,

{Φk}T [K]{Φk} = ω2
k (2.20)

If the viscous damping model is adopted, each mode can be considered as
single d.o.f. system for which we have:

{Φk}T [C]{Φk} = 2ξkωk (2.21)

where ξk is the modal damping ratio of mode k. The calculation of ξk will be
detailed later in this chapter. Finally, we note,

pk = {Φk}T{F ext} (2.22)

Combining Equations 2.18, 2.19, 2.20, 2.21 and 2.22 yields:

z̈k + 2ξkωkżk + ω2
kzk = pk (2.23)

This equation is analogous to the governing equation of a single d.o.f. system.
The global response of the system is thus described by a system ofm uncoupled
equations that can be solved individually by direct integration when the initial
conditions are known.

2.3.4 Harmonic response analysis - Forced vibration

The harmonic response analysis of a system consists in determining its ampli-
tude and phase response when the system is subjected to a harmonic loading
i.e. a loading that varies sinusoidally with time at a known frequency. The
solution of the nonhomogeneous differential equation 2.23 is the sum of its
associated homogeneous solution and a particular solution of the nonhomoge-
neous equation. The homogeneous solution, which is the solution of the system
under free vibration, dies out because of damping after a few oscillations and it
is called the transient response. The particular solution is known as the steady-
state response or, in the case of harmonic loading, as the harmonic response.
In steady-state response, the system oscillates with a constant amplitude at
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the frequency of the forcing excitation. This equation is usually solved in the
frequency domain by considering each mode k as a single d.o.f. system excited
under a load pk of circular frequency Ω and amplitude Pk:

pk = Pke
jΩt (2.24)

Equation 2.23 must be satisfied at all times; therefore the solution must have a
similar form to the loading,

zk = Zke
jΩt (2.25)

where Zk is the complex amplitude of the generalised coordinates. Substituting
Equations 2.24 and 2.25 in Equation 2.23 yields:

−Ω2Zke
jΩt + 2jξkωkΩZke

jΩt + ω2
kZke

jΩt = Pke
jΩt (2.26)

After simplification of the expression, we obtain:

Hk(jΩ) =
Zk
Pk

=
1

ω2
k − Ω2 + 2jξkωkΩ

(2.27)

where Hk(jΩ) is called the Frequency Response Function (FRF) and charac-
terises the mode’s intrinsic dynamic behaviour. The FRF is a complex number
that can be expressed in terms of its modulus and argument:

Hk(jΩ) = |Hk|ejφk (2.28)

The amplitude response and the phase angle are given by the modulus and
the argument of the FRF, respectively. It is often convenient to represent these
values in terms of βk = Ω/ωk:

|Hk| =
1/ωk√

(1− β2
k)

2 + (2ξkβk)2

φk = arctan

(
2ξkβk

(1− β2
k)

2

) (2.29)

A typical plot of the amplitude response and phase angle is shown in Figure
2.6. When the system is excited at the frequency of a mode k, i.e. when βk =

Ω/ωk = 1, the amplitude reaches a peak and the system enters into resonance.
The amplitude peak decreases as the modal damping ratio ξj increases. A FRF
whose output parameter is a displacement is called a receptance. The FRF can
also be measured experimentally using input force measurements and input
acceleration readings. The acceleration is obtained by differentiation of the
displacement with respect to time, such as z̈k = −Ω2Zke

jΩt. The FRF can then
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be expressed under another form called accelerance [24]:

Ak(jΩ) = −Ω2Hk(jΩ) (2.30)

Using Equations 2.27 and 2.25, the generalised displacements can be obtained
as follows,

zk = |Hk|ejφkPkejΩt (2.31)

where Pk is known from Equation 2.24. Finally, the nodal displacements can be
calculated from Equation 2.13.

Figure 2.6: Amplitude and phase response of a single d.o.f. system for various
values of damping ratio. Adapted from [6].

2.4 Vibration damping

As seen in the introduction, it is generally desirable to reduce the vibratory level
of a system excited by harmonic forces. If the exciting force can be modified,
the amplitude of vibration can be diminished by,

1. Moving the excitation frequency away from the resonance frequency of
the system,

2. Reducing the amplitude of the excitation,

3. Changing the location where the excitation is applied to the system in
order to make the excitation signal orthogonal to the resonant mode.
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If the exciting force has a constant frequency over time and cannot be altered,
the vibratory level can be reduced by,

1. Altering the mass and/or the stiffness of the system in order to push the
resonant frequency away from the excitation frequency,

2. Adding a dynamic vibration absorber (tuned mass damper) to the system.
This consists in storing vibrating energy in a device mounted on the
vibrating system which is tuned to cancel out the applied excitation. The
tuned mass damper’s mass and spring constants are tuned to bring its
resonance frequency as close as possible to the excitation’s frequency, in
order to create an anti-resonance.

If the forcing excitation cannot be modified and its frequency is not constant,
attenuating vibration level may be achieved by increasing the damping in the sys-
tem. This solution is one of the most commonly used in industrial applications
and this thesis will focus on it. Mechanical damping refers to the dissipation of
vibrational energy of an oscillating system [25]. As a result, the system’s peak
response amplitude and the duration of its oscillations are reduced. Vibration
damping can be broken down into three main categories: active, passive and
semi-active (or hybrid). Active damping involves measuring the system’s vibra-
tion response and applying automatically out-of-phase forces, cancelling out
the measured vibration [26]. Pairs of piezoelectric sensors and actuators are
typically used for active damping. Passive damping consists in energy dissipa-
tion by incorporating isolating materials into the vibrating structure. Vibrations
of the host structure induce strains in such damping material, which in turn
generate a force that opposes to the system’s oscillations. Typically, passive
damping can be introduced by viscoelastic materials, impact particles, shape
memory alloys or friction. Although passive damping is not as effective for small
amplitude and low frequency vibration, it has numerous advantages over active
damping. Passive damping devices are generally cheaper to develop and man-
ufacture, simpler to implement in vehicles, they generate less heat and they are
maintenance-free. They are therefore more suitable for high volume production
and more cost-effective. They also do not require electrical connectors, control
algorithms, a power supply, actuators and sensors, which can be a critical
design constraint in transport applications, for instance. Therefore, passive
damping has found applications in the automotive and aerospace industries
since the early sixties in an effort to extend service life and improve reliability and
safety while reducing manufacturing costs [26]. Semi-active or hybrid damping
consists in using active devices to amplify the strains in a lossy material, which
enhance the damping. Typically, it consists of the combination of a viscoelastic
material with piezoelectric ceramics, electro- or magneto-rheological fluids or
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magnetostrictive materials. The hybrid constrained layer damper combines the
ability of both passive viscoelastic materials to dissipate vibrational energy at
high frequencies and active piezoelectric materials to cancel out low frequency
excitations [27]. The work in this thesis will focus on the use of passive vis-
coelastic damping. A viscoelastic material exhibits both viscous and elastic
behaviour when undergoing deformation: it stores mechanical energy elastically
during loading and dissipates the rest in the form of heat [7]. A viscoelastic
material is typically a polymer (such as a silicone rubber) composed of long
molecular chains cross-linked together. The damping effect is produced by the
relaxation of the polymer network to its original shape after being deformed, but
it deforms more slowly than an elastic material. The strain in the viscoelastic
material lags behind the deformation produced by the excitation and opposes
the next cycle of vibration. The phase shift between strain and stress in a
viscoelastic material is illustrated in Figure 2.7. Since the relaxation rate de-
pends on the strength of the bonds between the molecular chain varies with the
temperature, the dynamic properties of viscoelastic materials are frequency-
and temperature-dependant.

Figure 2.7: Stress and strain versus time for a viscoelastic material subjected to
a sinusoidal excitation. Adapted from [7].
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2.4.1 Viscoelastic damping models

Three main types of damping models can be identified: viscous damping,
Coulomb damping and structural or hysteresis damping. Viscous damping
refers to energy dissipation due to the vibration of a structure in a fluid medium.
It is the most common form of damping and the simplest to implement in
mathematical models. Coulomb damping is caused by dry friction between
rubbing surfaces. Structural damping results from internal deformation within
the structure causing energy dissipation. Although a viscoelastic material would
be naturally described by the structural damping model, this form of damping
cannot be easily represented in mathematical models and viscous damping
is often considered as an alternative. As a rule of thumb, this assumption
is valid when the damping forces [C]{Ḋ} are less than about 10% of the
inertia and stiffness forces [M ]{D̈} and [K]{D}, see Equation 2.8 [6]. The
viscous damping model allows the damping matrix to be diagonalised which is
necessary in order to uncouple the system of equations of motion, see Equation
2.15. The damping matrix can either be described by a linear combination of the
mass and stiffness matrices (Rayleigh or proportional damping) or defined as
in Equation 2.21 (modal damping). The modal loss factor is this equation may
be estimated by the Modal Strain Energy (MSE) method derived by Johnson
and Kienholtz [28], which is detailed in Appendix A. In a system composed of m
damping materials, the MSE method gives the following estimation of the modal
loss factor of mode k:

ηk =

∑m
i=1 ηi,kUi,k
Utot

(2.32)

where ηi is the material loss factor of material i, Ui,k is the strain energy in the
material i under mode k and Utot is the total strain energy in the system. The
modal loss factor is related to the modal damping ratio by the following relations,

ηk =
2ξk√
1− ξ2

k

' 2ξk (2.33)

The MSE method can estimate the modal loss factors of a viscoelastically
damped composite structure based on strain energy considerations from the
undamped structure. This method is relatively easy to implement with the finite
element method but it is only applicable to systems under harmonic loading
with a constant frequency and in steady-state vibration. Although it is known
that the MSE method may give an inaccurate evaluation of the modal loss factor
and can tend to overestimate it – especially for highly damped systems [29,30],
it can efficiently provide a relative comparison of damping between different
structures. Since the MSE method was applied consistently across this thesis,
the results are at least comparable internally. Modified versions of the MSE
method have been formulated in order to provide a more accurate description of
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the modal loss factor [30–35] but they would add complexity without necessarily
aiding comparison between the different damping devices presented here. A
similar approach was adopted by Chia et al. [13]. An accurate mathematical
model accounting for the frequency and temperature dependence of viscoelastic
materials is complicated to formulate and the solution of the governing equation
difficult to obtain. Thus, it is common practice to assume isothermal conditions
and to only take into account the frequency dependence of viscoelastic materials
[29]. Some damping models accounting for the frequency dependence of
viscoelastic materials have been derived and implemented in finite element
formulations, such as the Golla-Hughes-McTavish [36,37] model or the Anelastic
Displacement Fields [38] methods, among others. Douglas and Yang [39]
formulated the frequency-dependant complex shear modulus of the viscoelastic
core of a constrained layer damper as G∗v(ω) = 0.142

(
ω
2π

)0.494
(1 + 1.46j) MPa.

For the range of frequency considered in this study (100 to 560 Hz), the storage
and loss moduli of the viscoelastic material considered would vary by 1.7 MPa
and 2.5 MPa, respectively. Hence the frequency dependence of the viscoelastic
material will be neglected in this study.

2.4.2 Measurement of damping

In simple structures such as single d.o.f systems, viscous damping can be
measured experimentally using the logarithmic decrement δl. The system is
subjected to an initial impact load and the decay of the free oscillations is
recorded. The peak amplitudes at times t and t+ nT , where T is the period of
the oscillations and n is the number of pseudo-periods considered, are related
to the logarithmic decrement by the following equation [40],

δl =
1

n
ln

(
A(t)

A(t+ nT )

)
(2.34)

where A(t) is the amplitude of the damped oscillations. The viscous damping
ratio can then be calculated with,

ξ =
δl√

(2π)2 + δ2
l

(2.35)

When a system is subjected to harmonic excitation, the damping ratio can
be measured using the Half-Power Bandwidth method (HPB). The response
amplitude must be calculated first in the frequency domain and the resonant
amplitude Q is recorded at the natural frequency ωn. The frequencies at Q/

√
2

or -3dB from the peak are then measured (see Figure 2.8) and the modal loss
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factor can be calculated using the following equation [24],

ηn =
ω2 − ω1

ωn
(2.36)

Figure 2.8: Half-power bandwidth method. Adapted from [8].

2.5 Passive viscoelastic damping in sandwich struc-

tures

Sandwich structures are widely used in the aerospace and other transport sec-
tors for their low density and excellent mechanical properties [15]. They exhibit
high stiffness-to-mass and strength-to-mass ratios which make them ideal can-
didates for load-bearing applications where mass is a critical issue. However,
structures used in transport are often deployed in vibration-rich environments
which leads to high cycle fatigue (and thus more frequent service intervals) and
passenger discomfort. The natural frequency of a sandwich panel varies with
the inverse of the relative density of the core (ω ∼ ρ−1/2). Thus, it is sometimes
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possible to increase the natural frequency beyond resonances by reducing the
core panel density [18]. However, in many applications, the constitutive proper-
ties of the sandwich panel cannot be modified and additive damping solutions
must be applied to the vibrating structure. The various passive viscoelastic
damping solutions for sandwich structures will be reviewed herein, excluding
research regarding acoustic isolation, wave propagation attenuation, active and
semi-active damping and nonlinear vibration since these topics lie outside the
scope of this thesis. An extensive review of the literature on vibration damping
in sandwich structure was conducted by Li and Crocker in 2005 [41].

2.5.1 Full viscoelastic core

The initial stage of passive damping in sandwich structures consists in applying
a single layer of damping material on the vibrating host structure [40]. The damp-
ing material, typically a viscoelastic material, is deformed as the host structure
vibrates, subjecting the viscoelastic material to tension-compression deforma-
tion and thus inducing energy dissipation. This type of damping treatment is
called an unconstrained or free layer damper and it is illustrated in Figure 2.9.
However, this extensional damping treatment achieves lower damping at a given
weight than shear damping treatments [40]. One of the most common examples
of shear damping treatment is the Constrained Layer Damper (CLD), in which
a thin viscoelastic layer is sandwiched between the host vibrating structure
and a stiff constraining layer [40], see Figure 2.10. This device constrains the
viscoelastic material to deform in shear and at relatively high strain thereby
efficiently dissipating vibration energy in the form of heat [25]. Ross, Ungar
and Kerwin [42–45] derived an analytical model for estimating the loss factor
of such extensional and shear damping treatments applied to beam and plate
structures. Later, DiTaranto [46,47] derived the governing equation of motion

(a) (b)

Viscoelastic material
Host structure

Figure 2.9: Unconstrained or free layer damper on an undeformed (a) and
deformed (b) structure.

of a sandwich beam with a viscoelastic core in free vibration and computed its
loss factor and natural frequency. Mead [48–51] extended DiTaranto’s work to
include the study of the forced vibration of viscoelastic damped sandwich beams
under a variety of boundary conditions. The damping behaviour of cantilever
sandwich beams with a viscoelastic core under forced harmonic excitation was
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(a) (b)

Viscoelastic material
Host structure

Constraining layer

Figure 2.10: Constrained layer damper on an undeformed (a) and deformed (b)
structure.

studied both theoretically and experimentally [52–55]. Yan and Dowell [56] de-
rived a simplified governing equation of motion that describes the free vibration
of sandwich beams and plates with a viscoelastic core. A large number of re-
search projects then used these models to compute the loss factor in sandwich
beams [39, 57–70]. Sylwan [71] developed a formulation for sandwich beam
which combines the shear and compressional damping effects of the CLD and
tuned mass damper, respectively. The first analytical model of simply supported
sandwich plates and cylindrical shells with a viscoelastic core was proposed by
Yu [72,73]. Contrary to the Ross-Ungar-Kerwin model, he calculated the damp-
ing in the system by solving the equation of motion directly, taking into account
the inertia effects due to transverse, longitudinal and rotary motions. Other
models of sandwich plate [74–77] and cylindrical shell [78] with a viscoelastic
core followed. The nonlinear response of viscoelastically damped sandwich
beams [79–83] and plates [84, 85] to forced excitation has been investigated
analytically, experimentally and numerically. The damping properties of CLDs
were also measured experimentally [86,87]. Many techniques that further en-
hance this shear damping mechanism have been investigated. For instance, the
multiple constrained layer damping treatment, in which multiple alternate layers
of damping material and constraining layers [88] are used to increase the shear
strain in the viscoelastic material significantly, see Figure 2.11. Such treatments
have been studied on sandwich beams [88–94], plates [95,96] and cylindrical
shells [97]. Other research focused on enhancing load bearing structures by
inserting viscoelastic material in constructs that use a similar shear damping
mechanism to the CLD. Ruzicka [9,98] proposed the so-called cell insert beam
in which a stiff rod covered with a damping polymer is inserted in a vibrating
beam. The relative displacement between the beam and the rod constrains the
viscoelastic material in shear, which dissipates vibrational energy. This concept
is illustrated in Figure 2.13. A similar damping construct involving shear tubes
was proposed by Marsh [99, 100]. A spacer layer (see Figure 2.12) can be
placed between the damping material and the constraining layer of a traditional
CLD, increasing the distance between the neutral axis of the host structure and
the constraining layer, thus magnifying the shear in the viscoelastic material
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and the structural damping of the structure. Both the bending rigidity and the
mass of the damper can be reduced by inserting slots in the spacer [26]. The
use of composite laminates such as fibre-reinforced polymer or carbon fibre in
the constraining layer allows a further weight reduction in the damped structure
while enhancing its load bearing properties. Such enhancements to the CLD
have been studied analytically in sandwich beams [101], plates [102–104] and
cylindrical shells [105,106]. The development of numerical methods such as

(a) (b)

Viscoelastic material
Host structure

Constraining layer

Figure 2.11: Multiple constrained layer damper on an undeformed (a) and
deformed (b) structure.

(a) (b)

Viscoelastic material

Host structure

Constraining layer

Spacer

Figure 2.12: Stand-off constrained damping treatment on an undeformed (a)
and deformed (b) structure.

the Rayleigh-Ritz, Galerkin and finite element methods allowed the modelling of
more complex structures. They have been applied to viscoelastically damped
sandwich beams [107–115], plates [116–121], cylindrical shells [122–124] and
rings [125]. The finite element method was also used to model the free vibration
of sandwich beams [126–136], plates [137–143] and cylindrical shells [144] with
fibre composite skins and soft damping cores. Finite element analysis was also
successfully applied to the modelling of forced vibration of damped sandwich
beams [145–148] and plates [149–153].

2.5.2 Partial constrained layer damper

Continuous layer CLDs are effective in damping vibrations but may add signifi-
cant extra mass to lightweight structures, which is a critical design constraint
for the transport industry. Discrete CLD patches were designed in an effort to
improve the weight efficiency of the CLD. It consists in partially covering the host
structure with dampers and this was proven to be more mass efficient than a
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Figure 2.13: Cell insert damper. Adapted from [9].

complete coverage. Nokes and Nelson [154] were among the first to investigate
partial coverage with CLDs and showed both theoretically and experimentally
that more efficient damping is possible for partially covered beams. The partial
coverage of beams [155–160], plates [161–167] and cylindrical shells [168,169]
with a single CLD patch and under a wider range of boundary conditions was
studied extensively. Granger [170] studied the transient response after impact
of a cantilever beam treated with a CLD. Levy et al. [171–173] proposed a
partial double CLD on a beam. Multiple CLD patches have also been placed
at strategic locations in order to maximise the damping efficiency of the treat-
ment [174–176]. Torvik [177] investigated the performance of a plate damped
with multiple CLDs whose constraining layer was segmented and showed that
significant damping can be achieved. Spalding [178] measured the vibration
response of CLD patches on a plate with a laser vibrometer.

2.5.3 Optimisation of partial constrained layer dampers

Minimising additional mass and maximising damping in a structure would nor-
mally be competing objectives. Further efforts to combine lightweight and high
damping properties naturally led to the use of optimisation techniques. Early
optimisation attempts consisted in varying a design parameter iteratively in
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order to determine the optimal damping configuration [89]. These parametric
optimisation studies sought to find the optimal damping and constraining layer
thicknesses, material properties and location of CLD dampers for various types
of structures [179–182] Subsequently, the development of heuristic algorithms
contributed to identify optimal damping configurations more efficiently, especially
for problems characterised by a large number of potential solutions. These
techniques determine the optimal configuration of a problem by a process of
trial and error. Heuristic search methods include evolutionary algorithms whose
optimisation mechanism is based on the principle of survival of the fittest or
the natural selection [183]. Evolutionary algorithms were applied to optimised
CLD parameters such as the length of the damper [184], the thickness of the
viscoelastic and constraining layers [185–190], the viscoelastic material’s shear
modulus [191], the distribution of ablations in the CLD [192–194], the composite
skin fibre orientation [195–199] or the design of a periodic pattern in the damp-
ing layer [200]. However, most authors focused their efforts on determining
the location and dimensions of CLD patches that were intended to maximise
the damping whilst minimising the additional mass. These studies employed
a wide range of evolutionary optimisation algorithms and considered different
geometries of host structures. They are listed in Table 2.2.
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Author Year Geometry Optimisation algorithm

Lunden [201] 1979 Cantilever beam Sequential unconstrained
minimization technique

Lunden [202] 1980 Plane frame Sequential unconstrained
minimization technique

Hajela and Lin [203] 1991 Cantilever beam Genetic algorithm
Marcelin et al. [204] 1992 Cantilever beam Method of the moving

asymptotes
Marcelin et al. [205] 1994 Clamped clamped

plate
Genetic algorithm

Marcelin et
al. [206,207]

1995 Free-free beam Genetic algorithm

Marcelin et al. [206] 1995 Free-free beam Genetic algorithm
Chen and
Huang [208]

2002 Simply supported
plate

Topographical method

Al-Ajmi [209] 2004 Cantilever beam and
plate

Topology optimisation

Zheng et
al. [210,211]

2004 Simply supported
beam

Genetic algorithm

Zheng et al. [212] 2005 Cylindrical shell Genetic algorithm
Pau et al. [213] 2006 Cantilever beam Sequential quadratic

programming
Alvelid [214] 2008 Clamped plate Gradient-based

optimisation
Chia et al. [13,215] 2009 Free plate Cellular automata
Hou et al. [216] 2011 Simply supported

beam
Genetic algorithm

Le Maout et al. [217] 2011 Free plate Linear-search algorithm
Kim [218] 2011 Cantilever plate Genetic algorithm
Ling et al. [219] 2011 Cantilever and simply

supported plate
Method of the moving
asymptotes

Hou et al. [220] 2012 Simply supported
plate

Genetic algorithm

Li et al. [221] 2012 Free plate Cellular automata
Kang [222] 2012 Cantilever and simply

supported plate
Solid isotropic material
with penalization

Ansari et al. [223] 2013 Cantilever plate Level-set method
Grewal et al. [224] 2013 Cantilever and

clamped beam
Genetic algorithm
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Montemurro et
al. [225]

2013 Cantilever and simply
supported plate

Two-level optimisation
strategy

Kim et al. [226] 2013 Cylindrical shell Topology optimisation
Zheng et al. [227] 2013 Simply supported

plate
Method of the moving
asymptotes

Zoghaib and
Mattei [228]

2014 Cantilever beam Conjugate gradient
algorithm

Fang and
Zheng [229]

2014 Cantilever plate Level-set method

Fang and
Zheng [230]

2015 Cantilever and
clamped plate

Evolutionary Structural
Optimisation

Xu et al. [231] 2015 Cantilever beam and
simply supported
plate

Genetic algorithm
(NSGA-II)

Table 2.2: Optmisation studies seeking to optimise the location and dimensions
of passive CLD treatments giving the maximum damping for the least additional
mass.

2.5.4 Structural damping of sandwich structures with lightweight
cellular solid cores

Replacing the soft viscoelastic polymer by a lightweight cellular solid core can
considerably enhance the load-bearing properties of sandwich constructions
[15]. Many recent research projects have investigated the damping behaviour
of sandwich structures with lightweight cellular solid cores, including PVC [232–
236] or expanded polystyrene [237] foam core. The combination of foam core
with carbon fibre [238–241] or fibre-reinforced polymer [135,242] skins allowed
further weight saving while still providing the structure with significant damping.
Other researchers investigated the damping properties of alternative types of
core materials such as cork [243,244], sand [245–247], nanocomposites [248]
or perforated viscoelastic cores [249]. Vibration damping in honeycomb-core
sandwich structures is also an important field of research [250–253]. Maheri and
Adams [254–259] estimated the damping in such structures both experimentally
and numerically using the finite element method. Staley [10] patented a damping
treatment using a honeycomb sandwich structure as constraining layer, see
Figure 2.14. Renji [260] and Nagasankar [261] explored the damping properties
of honeycomb sandwich structures with fibre-reinforced polymer skins. In an
attempt to further maximise the damping-to-weight ratio in vibrating structures,
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Constraining layer

viscoelastic material

host structure

face sheet

honeycomb

face sheet

face sheet

honeycomb

face sheet

Figure 2.14: Lightweight passive damping treatment patented by Staley.
Adapted from [10].

some authors have sought to integrate damping materials in the lightweight
cellular solid core of sandwich structures. One advantage is that is prevents the
bonding of damping treatments on the external surface of the host structure,
which may be an issue for devices designed to control a fluid flow such as
an aircraft wing or a gas turbine blade. Various damping techniques can be
combined with honeycomb structures in order to increase the structural damping.
For instance, appreciable damping can be achieved across a large frequency
range by filling the cells of a honeycomb sandwich structure with fine particles or
granular material, see Figure 2.15. It was shown that repeated particle collisions
on the face sheets of the honeycomb cell leads to a significant attenuation of
the amplitude of vibration [262,263]. This comes at the expense of a minimal
increase in the structure’s mass and a moderate change in the structure’s
stiffness. A wide range of materials can be used for such particles, including
solder balls [264], polyimide [11], perlite [265], sand [266], metal rubber [267],
aluminium, steel or tungsten carbide [268]. Michon et al. [262,263] filled the cell
of a honeycomb-cored sandwich beam with hollow metallic and glass sphere
particles in order to further improve the damping-to-mass ratio of the structure.
Honeycomb structures can also be filled with energy absorbing foam in order
to damp vibrations [269–274]. Romberg et al. [275, 276] have studied the
performance of a passive friction ledge damping device which can be inserted
into a flat honeycomb-core sandwich panel. Shape memory alloys and polymers
can also be used as vibration damping materials in sandwich panels [277,278].
Boucher et al. [12] designed a honeycomb structure embedded with shape
memory alloys in order to enhance its damping capabilities, see Figure 2.16.
Finally, a recent development of this concept was to combine viscoelastic
materials with cellular solids in sandwich cores in order to provide significant
energy dissipation while retaining a good mechanical integrity. The insertion
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Figure 2.15: Polymer particles in a honeycomb-cored sandwich panel. Adapted
from [11].

of silicon rubber into the void of a honeycomb cell was proven an efficient
way of damping vibration [279]. Murray et al. [280–282] proposed to fill the
cells of a metallic honeycomb structure with a lossy polymer which significantly
increased the structural loss factor. Jung and Aref [283] have investigated
experimentally the stiffness and damping properties of a hybrid honeycomb
viscoelastic system. It was shown that embedded viscoelastic layers in the
carbon-fibre skins of a honeycomb or truss core sandwich structure can provide
substantial damping [284–286]. Guo and Jiang [287] designed a cylindrical
damper acting as a member of a Kagome truss lattice. It consists of a stiff
sleeve threaded into a rod and with a viscoelastic material in between. The
relative displacement of the sleeve and the rod due to the deflection of the
sandwich structures causes shear in the damping polymer and dissipates
energy. Boucher et al. [288] showed that a partial filling of the honeycomb
cell void can produce significant damping, and importantly with only a minimal
increase in mass. Subsequently, they patented the design of elastomer fillets
which can be inserted at the acute vertices of an auxetic honeycomb cell [289].
Recently, the authors also developed a new concept – the Double Shear Lap
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Figure 2.16: A honeycomb cell embedded with shape memory alloys. Adapted
from [12].

Joint (DSLJ) damper – a weight-efficiency viscoelastic damper that can be
inserted into the hexagonal cell of a honeycomb lattice [16]. It consists of a
double shear lap-joint construct (see Figure 2.17) located internally in a structure
so that flexure of the host structure results in rotation of the arms of the lap joint
and thus, magnifying shear in the viscoelastic material and leading to significant
energy dissipation.

(a) (b)

Figure 2.17: A DSLJ damper in a hexagonal honeycomb cell before (a) and
after deformation (b). The viscoelastic material is shown in yellow.

2.6 Conclusion

This chapter presented a review of the literature on passive vibration damping
for lightweight sandwich structures. It also introduced the derivation of the
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governing equation of motion of a vibrating system using the finite element
method. The solution of this equation was given for both the free and forced
vibration responses of a vibrating system as will be used subsequently in this
thesis.
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Chapter 3

Modelling methods

3.1 Introduction

In this chapter, the damping mechanism of the DSLJ damper will be described,
both at the scale of a single hexagonal cell and an entire honeycomb sandwich
structure. An analytical model will be derived in order to evaluate the reliability
of the numerical finite element model used subsequently in this thesis. The
mode shapes, natural frequencies, modal loss factors and amplitude responses
of a variety of honeycomb-core sandwich structures will be given as preliminary
results.

3.2 DSLJ inserted in a single hexagonal cell

3.2.1 Analytical model

The DSLJ damper [16] is composed of three rectangular metallic sheets ar-
ranged in a double lap-joint layout with viscoelastic material filled in between,
as illustrated in Figure 3.1. It can be inserted between two opposite corners
of a hexagonal honeycomb cell. Honeycomb structures are very often used
as a core material for sandwich structures, which are slender structures prone
to out-of-plane flexural vibration. Under such conditions, the honeycomb cell
sees alternately its bottom and top deformed in tension and in compression,
and its core deformed in shear, as illustrated in Figure 3.2. Consequently, a
honeycomb cell with a DSLJ insert in a sandwich panel in bending is deformed
as shown in Figures 3.1 (c - d). The viscoelastic material undergoes shear
deformation from the relative rotation of the three constraining rigid elements,
which dissipates vibrational energy. The DSLJ damper can be inserted along
three different orientations in a hexagonal honeycomb cell, see Figure 3.3.

The structure considered here is a DSLJ damper inserted in a hexagonal
cell which has two opposite edges deformed statically by a tension-compression
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(a)

(b) (c) (d)

Figure 3.1: (a) A DSLJ insert in a hexagonal honeycomb cell, (b) a single DSLJ
damper, (c) and (d) a DSLJ damper deformed as the sandwich panel undergoes
flexural vibration. The viscoelastic material is represented in yellow and the
constraining material in grey.

Figure 3.2: A honeycomb unit cell

loading of maximum amplitude W = 10N . The dimensions of the structure
are shown in Figure 3.4. The cell is a regular hexagon of side l = h = 10mm,
angle θ = 30° and height tc = 10mm, being fairly typical of honeycombs used
in the aerospace sector. The DSLJ damper is li = 16.5mm long, hi = 1mm

wide and is offset by 1 mm from the bottom and top of the cell such that its
height is bi = 8mm, thus preventing the DSLJ’s rigid elements from coming into

34



3.2. DSLJ INSERTED IN A SINGLE HEXAGONAL CELL

Figure 3.3: Three possible orientations of a DSLJ damper in a hexagonal cell.

contact with the sandwich face sheets during flexure of the sandwich panel. An
initial static test showed that the tip displacement of a 270mm-long cantilever
sandwich beam required for the DSLJ’s arms to come into contact with the upper
or lower skin was approximately 80 mm. Such a large deflection is unlikely
to occur for the small vibration amplitude considered so such contact was not
considered any further. The honeycomb cell walls, the DSLJ’s rigid elements
and the sandwich skins are made of a tw = 0.2mm thick aluminium sheet. The
dimensions of the structure are referenced in Table 3.2. The damping material
is a viscoelastic silicone rubber whose density is less than half that of the
aluminium’s density, its modulus about 8,000 times lower than aluminium, and
its material loss factor is 3,000 times higher than aluminium. These values are
similar to that of Chia et al. [13] and are typical of a silicone rubber at constant
room temperature. The properties of the materials used here can be found in
Table 3.1.

Aluminium Viscoelastic material (sil-
icone rubber)

Young’s modulus (MPa) Ea = 70, 000 Ev = 8.7

Poisson’s ratio νa = 0.3 νv = 0.45

Shear modulus (MPa) Ga = Ea/(2(1 + νa)) =

26.9

Gv = Ev/(2(1 + νv)) = 3

Material loss factor ηa = 0.0001 ηv = 0.3

Density (kg/m3) ρa = 2, 700 ρv = 1, 100

Table 3.1: Material properties of the honeycomb cell and the DSLJ damper.
The honeycomb cell is made of aluminium and the viscoelastic material is a
silicone rubber whose material properties were adapted from references [8]
and [13], respectively. Subscripts a and v stand for ‘aluminium’ and ‘viscoelastic’,
respectively.

As seen in Chapter 2, the MSE method is widely used for estimating the
loss factor of structures composed of two or more materials. It is generalised
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li
l

h

3hi tan(θ)θ

x

h+ 2l sin(θ)

y

3hi tan(θ)

hi

Figure 3.4: A honeycomb unit cell with a DSLJ damping insert.

honeycomb cell DSLJ insert

length (mm) h = l = 10 li = 16.5

cell thickness (mm) tc = 10 bi = 8

width (mm) hi = 1

wall thickness (mm) tw = 0.2 ti = 0.2

skin thickness (mm) tf = 0.2

cell angle (◦) θ = 30

Table 3.2: Dimensions and loading values of the honeycomb cell and the DSLJ
damper. Subscripts c, f and i stand for ‘core’, ‘face’ and ‘insert’, respectively.

here to a structure under static loading,

η =
ηvUv + ηaUh

Utot
(3.1)

where ηv and ηa are the material loss factors of the viscoelastic material and
the constitutive material of the honeycomb cell (aluminium), respectively. Uv,
Uh and Utot = Uv + Uh are the elastic strain energies stored in the viscoelastic
material, in the honeycomb constitutive material and in the global structure,
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respectively [40]. The strain energy in the rigid elements of the DSLJ damper
is neglected here. Viscoelastic materials dissipate part of the work applied
by external forces in the form of heat [7]. If this heat is not dissipated quickly,
the consequent temperature increase may change the material’s damping
properties. The MSE method adopted here estimates the loss factor of a
structure as the ratio of elastic strain energy stored in the viscoelastic material
(in the MSE method this is assumed to be equivalent to the external work done
on the viscoelastic) multiplied by a material loss factor, to the total elastic strain
energy stored in the structure, see Equation 3.1. It considers the mode shapes
of the undamped structure with the viscoelastic material treated as if it was
purely elastic with a real modulus [28]. The main drawback of this method
is that it does not account for the temperature- and frequency-dependence
of viscoelastic materials and can thus be inaccurate if they change markedly;
see for example [29]. More refined and complex damping models such as the
Golla-Hugues-McTavish method or the anelastic displacement fields method
would give more realistic results but it would not necessarily aid comparison
between the analytical and finite element models in this chapter or different
DSLJ configurations as in subsequent chapters.

Forces applied to the structure

Gibson and Ashby [17,290] have proposed an analytical model for the elastic
deformation of honeycomb cells under uniaxial in-plane loading. The cell wall
can be modelled as a cantilever beam fixed at one end and guided at the other,
see Figures 3.5 and 3.6. For slender cell walls (i.e. small tw/l ratio) and for
internal angles θ not approaching 0°, the axial and shear deformations in the
cell wall are small compared to the bending deflection and can therefore be
neglected [291]. As mentioned previously, the honeycomb cell is part of a
sandwich panel under flexural vibration whose core is deformed in tension at
the top and in compression at the bottom. It is assumed here that such loading
varies linearly across the depth of the cell, being equal to W at z = tc/2, −W
at z = −tc/2 and zero at the transverse mid-plane z = 0, such as illustrated in
Figure 3.7,

W (z) = W
z

tc/2
∀z ∈

[−tc
2

;
tc
2

]
(3.2)

The honeycomb cell wall is loaded in bending under the action of this external
force W (z) but is also subjected to the reacting force of the insert Fi(z) acting
in the opposite direction, see the free-body diagram of the cell wall in Figure
3.6. Thus, the total force R(z) bending the cell wall is,

R(z) = W (z)− Fi(z) (3.3)
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θ

x

y

δi(z)
W (z)W (z)

Figure 3.5: Deformed honeycomb cell with DSLJ insert. The area identified
with a red ellipse is shown in Figure 3.6.

The bending moment moment applied on the cell wall is,

M(z) = R(z)l cos θ (3.4)

According to the classical beam theory [292], the bending deflection δ(z) of the
cell wall is,

δ(z) =
M(z)l2

12EaI
(3.5)

where I = tct
3
w/12 is the second moment of area of the cell wall. Assuming small

linear elastic deformations, the insert is considered as a spring of constant ki.
The reaction force Fi(z) of the DSLJ damper on the cell wall can be expressed
as,

Fi(z) = kiδi(z) ∀z ∈
[−bi

2
;
bi
2

]
(3.6)

where δi(z) is the deflection of the DSLJ’s rigid element in the x-direction, see
Figure 3.5. The DSLJ damper constrains two rectangular cuboids made of
viscoelastic material in torsion. First considering only half of the DSLJ damper
(i.e. a single lap-joint damper), the viscoelastic solid may be seen as a bar of
rectangular cross section of dimensions bi × li × hi subjected to an in-plane
force F1/2(z) = Fi(z)/2 such as illustrated in Figure 3.8. Using the linear
elastic constitutive equations in shear τi(z) = F1/2(z)/bili, γi(z) = δi(z)/hi,
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θ

θ

δi(z)

δ(z)

δi(z)

l cos θ M(z)

Fi(z)

W (z)

W (z)

Figure 3.6: Free body diagram of a cell wall.

W (z)

tc

x

z

W (z)

Figure 3.7: Loading of the honeycomb cell.
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τi(z) = Gvγi(z) and Equation 3.6, one can obtain the stiffness of the insert:

ki =
2Gvbili
hi

(3.7)

where bi, li and hi are the height, length and width of the single lap-joint damper
defined in Figure 3.4. Simple geometry yields li = (h+ 2l sin θ)− 6hi tan θ. From
geometrical considerations (see Figure 3.6) we have,

δi(z) =
δ(z)

cos θ
∀θ 6= π (3.8)

Using Equations 3.4, 3.5, 3.6 and 3.8, the force acting on the DSLJ damper can
be expressed as follows,

Fi(z) =
kil

3R(z)

12EaI
(3.9)

Defining the adimensional constant A = kil
3

12EaI
and substituting from Equation

3.3, we have,

Fi(z) =
W (z)

1 + 1/A
(3.10)

R(z) =
W (z)

1 + A
(3.11)

Using Equation 3.2, the force applied on the cell wall and the force exerted by
half of the DSLJ insert can be expressed in terms of z:

F1/2(z) =
W

(1 + 1/A)tc
z (3.12)

R(z) =
W

(1 + A)tc/2
z (3.13)

Elastic strain energy stored in the honeycomb cell

From Gibson and Ashby [17], the strain and stress in the cell wall can be
expressed as,

εx(z) =
δ(z) cos θ

h+ l sin θ

σx(z) =
R(z)

ltc cos θ

(3.14)

The strain energy in a cell wall in the x-direction is defined as,

Uw =
1

2

∫
V

σx(z)εx(z)dV (3.15)

Substituting from Equations 3.14, 3.5 and 3.2, one can obtain,

Uw =

∫∫∫
V

R(z)2l2 cos θ

24EaI(h+ l sin θ)tc
dx dy dz (3.16)
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bi

li

F1/2(z)

hi

θi = 2α

O

z

x

Figure 3.8: Strain profile in the viscoleastic material of half of a DSLJ insert
when the cell is deformed in bending.

This equation can be expressed as,

Uw =
W 2l2 cos θ

6EaIt3c(h+ l sin θ)(A+ 1)2

∫∫
A

dx dy

∫ tc/2

−tc/2
z2dz (3.17)

Assuming that the cross-section of the cell remains undeformed for a given
altitude z, simple geometry gives

∫∫
A
dx dy = twl. After integration, one can

obtain,

Uw =
W 2l3tw cos θ

72EaI(h+ l sin θ)(A+ 1)2
(3.18)

Assuming that the strain energy in two cell walls parallel to the loading is small
compared to that in the four other walls (see Figure 3.5), the strain energy in
the honeycomb cell is approximately four times Uw.

Uh ' 4Uw (3.19)

41



CHAPTER 3. MODELLING METHODS

Elastic strain energy stored in the viscoelastic material

The principle of conservation of energy states that the strain energy in an elastic
material is equal to the work done by the external forces:

U1/2 =

∫ θi

0

Tidθi (3.20)

where Ti is the torque applied to the single and θi is the angle of twist. Assuming
that the material is homogeneous, isotropic, linear elastic and is undergoing
pure torsion, the shear strain energy can be expressed as:

U1/2 =
Tiθi

2
(3.21)

From the elastic torsion theory [292], the angle of twist in a bar of rectangular
cross section is:

θi =
Tihi
KiGv

(3.22)

where Ki is a geometric parameter defined as follows,

Ki = ab3

[
16

3
− 3.36

b

a

(
1− b4

12a4

)]
(3.23)

where a = li/2, b = bi/2 and li is the length of the DSLJ insert. Following Figure
3.8, the applied torque Ti can be expressed as:

Ti =

∫ bi/2

−bi/2

−−−−→
F1/2(z)

−→
dz (3.24)

Using the sign convention in Figure 3.8, we have,

Ti =

∫ bi/2

0

F1/2(z)dz +

∫ 0

−bi/2
−F1/2(z)dz (3.25)

Using Equation 3.12, the torque can be expressed as,

Ti =
W

(1 + 1/A)tc

∫ bi/2

0

zdz +

∫ 0

−bi/2
−zdz (3.26)

After integration, one can obtain:

Ti =
Wb4

i

4(1 + 1/A)tc
(3.27)

Finally, the total shear strain energy stored in the DSLJ’s viscoelastic material is
the double of U1/2:

Uv = 2U1/2 (3.28)
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Mass of the structure

The total mass of the structure is,

m = ρaVh + ρaVs + ρvVi (3.29)

where Vh, Vs and Vi are the volumes of the honeycomb cell, the DSLJ’s stiff
elements and the viscoelastic polymer, respectively. Simple geometry yields,

Vh = 2twtc(h+ 2l)

Vs ' 3twbi(h+ 2l sin θ − 3hi tan θ)

Vi = 2lihibi

(3.30)

3.2.2 Finite element model

The DSLJ damper in a honeycomb cell was modelled with the commercial
finite element software ANSYS 14.0 [293] using the dimensions and material
properties described in Tables 3.2 and 3.1. Four-noded structural shell elements
with six degrees of freedom per node (SHELL181 in ANSYS) were used to
mesh the honeycomb cell wall and the DSLJ’s rigid elements. The viscoelastic
material in the DSLJ was meshed with an eight-noded brick element with three
degrees of freedom per node (SOLID185 in ANSYS). A total of approximately
20,000 elements were used to mesh the structure. The contact interaction
between the solid and shell elements required to overlap the contact surfaces in
order to ensure that the nodes were coincident at the interface. The degrees of
freedom of these nodes were then coupled in order to enforce compatibility at
the interface between shell and solid elements, in a similar way to the approach
adopted by Chia et al. [13]. The enhanced strain formulation was used to
prevent shear locking of the brick elements. The MSE method was adopted to
evaluate the loss factor. Similarly to the analytical model, flexural loading was
applied to the cell via static in-plane forces to the nodes on the opposing edges
of the cell. These forces were parallel to the x axis, and applied in opposite
directions on each contralateral edge. Their magnitude was varied linearly in
the z-direction, being maximal (i.e. W = 10N ) at the top and bottom and zero
at the cell’s transverse mid-plane. Two nodes located on the mid plane and
at the centre of the opposing parallel walls of the cell (shown in Figure 3.9)
were ‘pinned’. Specifically these nodes were constrained in all their degrees of
freedom except the rotation along the y axis in order to allow relative motion
between the DSLJ’s rigid elements. The mesh, boundary conditions and applied
loading are represented in Figure 3.9.

43



CHAPTER 3. MODELLING METHODS

Figure 3.9: Mesh, load and boundary conditions of the finite element model.
The load and the constrained nodes are represented by red arrows and yellow
crosses, respectively.

3.2.3 DSLJ insert vs CLD

The DSLJ insert utilises a similar damping mechanism to the commonly used
Constrained Layer Damper (CLD), i.e. it converts the global deformation in
the host structure into relative internal displacement, which generates shear
strain in a lossy polymer. However, the innovation in the DSLJ damper is
that it induces relative rotation of the stiff elements, as opposed to relative
translations in the case of the CLD. Since the damping is mainly driven by
the strain energy seen by the viscoelastic polymer, the strain energy density
(i.e. strain energy per unit volume) in the viscoelastic layer is a measure of the
efficiency of a damping mechanism using viscoelastic materials. It is proposed
here to compare the damping efficiency of the CLD and a single shear lap
joint damper by comparing the strain energy densities seen by the viscoelastic
polymer when the host structure is bent under the same deflection angle α.
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Strain energy density in the DSLJ’s viscoelastic material

In the case of a single shear lap joint damper, using equations 3.21 and 3.22, it
can be shown that the strain energy seen by the viscoelastic polymer is:

U1/2 =
KiGvθ

2
i

2hi
(3.31)

When the host sandwich panel bends by an angle α, the single lap-joint’s
rigid element also rotate relatively from each other by an angle α. Therefore,
the angle of twist in the insert’s viscoelastic layer is θi = 2α. The volume of a
single lap-joint insert is V1/2 = hilibi. Therefore, the strain energy density in the
DSLJ’s viscoelastic material is:

ui =
2KiGvα

2

h2
i bili

(3.32)

Strain energy density in the CLD’s viscoelastic layer

The viscoelastic material in a CLD can be modelled as a rectangular cuboid
whose top surface is translated by a distance δc, see Figure 3.10. The dimen-
sions of the CLD’s viscoelastic layer are chosen identical to that of the single
lap-joint damper previously considered, i.e. length li, width bi and thickness hi.
The shear strain energy is defined as,

Ucld =
1

2

∫
V

τcγcdV (3.33)

Assuming that the material is homogeneous, isotropic and linear elastic, Hooke’s
law in shear (τc = Gvγc) yields,

Ucld =
1

2

∫
V

Gvγ
2
cdV (3.34)

The strain is γc ' tan γc = δc
hi

, see Figure 3.10. The shear strain energy
density in the CLD’s damping layer thus becomes,

ucld =
Gvδ

2
c

2h2
i

(3.35)

From geometrical considerations (see Figure 3.11), the deformation δc corre-
sponding to a deflection of the host structure by an angle α can be expressed
as:

δc = αR− βd (3.36)

where R, d and β are defined in Figure 3.11. For better performance, the
viscoelastic layer is usually designed very thin, therefore we can assume that
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β ' α:
δc ' α(R− d) (3.37)

d can be expressed from geometrical reasoning as d = R− c+ h1 + hi where
c = δc/ sinα. In order to obtain a consistent comparison between the CLD and
the DSLJ damper, the thickness of the CLD’s host structure is chosen equal to
the honeycomb cell thickness h1 = tc = 10mm. Thus δc can be expressed as,

δc =
h1 + hi

1/ sinα− 1/α
(3.38)

γc

δc

hi

li

bi

Figure 3.10: Simplified representation of the deformation of the viscoelastic
layer in a CLD.

3.3 Honeycomb sandwich structures

The finite element model of the honeycomb-core sandwich structures studied
subsequently in this thesis will be described here in the case of free and forced
vibration. The results will be compared with those of an analytical model from
the literature.

3.3.1 Analytical model

As seen in the literature review, there are numerous analytical models of honey-
comb sandwich structures in free vibration. Raville and Ueng [294] derived an
analytical model of a sandwich plate with an orthotropic core simply supported
along all edges. Their model does not include the effects of the rotatory inertia
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α

β ' α
α

β ' α

δc

R

c = δc
sinα

d = R− c+ h1 + hi

αR

βd

h1

hi

Figure 3.11: CLD on a deformed host structure.

and transverse shear of the facings. The eigenfrequencies fmn = ωmn/2π of
a a = 300mm long and b = 173mm wide rectangular and simply supported
honeycomb sandwich plate are given as,

ω2
mn =

Ea(ξ
2 + η2)2

ρarea(1− ν2
a)t4c

(
If +

It
1 + Smn

)
(3.39)

where,

ξ = mπtc/a

η = nπtc/b

If = 2tf/12

It = tf (tc + tf )
2/2

r = Gxz/Gyz

β = a/b

Λmn = m2 + (nβ)2/r

W =
tctfπ

2Ea
2b2Gxz(1− ν2

a)

Smn =
W

Λmn

(
(m2 + (nβ)2)2

β2
+

m2n2r(1− 1/r))2

1 + ΛmnWr(1− νa)/(2β2)

)

(3.40)

m and n are integers corresponding to the mode numbers along the length
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and the width, respectively. The shear moduli of the honeycomb core in the zx
and yz plane are given by Gibson and Ashby [17] as,

Gxz =

(
tw
l

)3
Ga cos θ

h/l + sin θ)

Gyz =

(
tw
l

)3
Ga(h/l + 2 sin2 θ)

2 cos θ(h/l + sin θ)

(3.41)

Note that for regular hexagonal cells (i.e. h = l and θ = π/6), we have
Gxz = Gyz. The mass density of the plate per unit area ρarea can be computed
by calculating the mass and area of a single honeycomb cell with skins. The
area and volume of the cell can be calculated using simple geometry,

Acell = 4(h+ l sin θ)(l cos θ)

Vcell = 2tctw(h+ 2l) + htctw + 2tAcell
(3.42)

The mass density per unit area can then be computed as follows,

ρarea =
ρaVcell
Acell

(3.43)

The mode shapes of a simply supported sandwich plate follow the classical
Navier’s solutions,

wmn(x, y) = Amn sin
mπx

a
sin

nπy

b
(3.44)

where Amn is a coefficient that can be normalised to unity.

3.3.2 Finite element model

The sandwich structures considered in this thesis are modelled in three di-
mensions using the commercial finite element software ANSYS 14.0 [293]. A
computationally efficient approach would consist in modelling the sandwich
structure with laminated shell elements. However, it was necessary here to
model the geometric details of the core (i.e. the hexagonal cells) because of
the particular damping mechanism of the DSLJ damper which is based on the
internal deformation of the honeycomb cells. The honeycomb-cored sandwich
beam and plate considered here are illustrated in Figures 3.12 and 3.13, respec-
tively. The plate’s honeycomb core is composed of 181 hexagonal cells, with
10 complete cells along its length and 10 complete cells across its width, plus
9×9 interleaving cells. The beam’s honeycomb core is made of 9×2 complete
cells and 8×1 interleaving cells, making a total of 26 cells. The beam’s length,
width and thickness are 270 mm, 34.6 mm and 10 mm, respectively. The plate
is 300 mm long, 173 mm wide and 10 mm thick. This gives a length-to-depth
aspect ratio of 27:1 for the beam and 30:1 for the plate. The panel skins are
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considered to be thin (2% of the panel’s depth), and made of the same material
as the honeycomb cells (aluminium in this case).

The six structures considered here are a cantilever beam (CF beam), a
simply supported beam (SS beam), a cantilever plate (CFFF plate), a plate
with free boundary conditions (FFFF plate), a plate with simply supported and
free boundary conditions on the short and long edges, respectively (SFSF
plate) and a plate with simply supported boundary conditions along all edges
(SSSS plate). The cantilever boundary condition consists in fixing the degrees
of freedom of all the nodes on the edge (i.e. ux = uy = uz = rxy = rxz = ryz = 0).
Simply supported boundary conditions involve constraining the nodes on the
bottom surface of the structure’s edge with no translational freedom but retaining
rotational freedom, i.e. ux = uy = uz = 0, following Srinivas [295]. The free
boundary condition imposes no constraint on any nodes. The two sandwich
skins are perfectly bonded to the core by merging the coincident nodes at the
core-skin interface. The type of element used and the finite element model of
the honeycomb cell were described earlier in this chapter.

270 mm

10 mm

34.6 mm

10 mm
10 mm

1

23

Figure 3.12: Honeycomb-cored sandwich beam, with upper skin removed for
clarity.

300 mm

173 mm
10 mm 10 mm

10 mm

z

x

y

Figure 3.13: The array of hexagonal cells in the honeycomb core and the lower
skin, with upper skin removed for clarity. A single DSLJ insert is sketched in the
centre.

The first five mode shapes and eigenfrequencies are extracted by modal
analysis as described in Chapter 2. In the case of the free boundary conditions,
the rigid body modes are ignored. The FRF of the sandwich structures is
computed in single input single output configuration by mode superposition

49



CHAPTER 3. MODELLING METHODS

harmonic analysis. Ten thousand substeps are used across a frequency range
of 2,700 Hz and the forcing excitation has an amplitude of 10 N. The finite ele-
ment model implemented using ANSYS Parametric Design Language (APDL)
is presented in Appendix B.

3.4 Preliminary results

3.4.1 DSLJ inserted in a single hexagonal cell

The contour plot of the strain energy in the honeycomb cell with a DSLJ damper
is shown in Figure 3.14. The vast majority of the strain energy is seen by
the viscoelastic polymer, suggesting that the DSLJ’s damping mechanism is
effective. A comparison of the loss factor and mass of the honeycomb cell
computed analytically and via the finite element method can be found in Table
3.3. The value of the mass is comparable between the finite element and
analytical models, however the loss factor of the analytical model is higher
than the one computed via the finite element method. This is likely due to the
following assumptions and in this order of importance:

• The analytical model cannot adequately capture the pattern of strain
in the cell walls, particularly the angled cell walls, and so the damping
loss factor (which is a ratio of viscoelastic loss to total strain energy) is
underestimated. In the model for honeycomb cells developed by Gibson
and Ashby and others since, the in-plane and shear deformations in the
flexural cell wall are assumed to be near zero under in-plane loading
and are ignored [17]. This is known to be correct for slender cell walls
loaded in-plane and angles θ not approaching 0° [291]. However, these
deformations appear not to be insignificant for the loading mode adopted
here, i.e. a tension-compression force simulating flexure. In this case,
there is significant in-plane deformation of the angled cell walls, captured
by the finite element model but not the analytical, which gives rise to a
near hundredfold difference in strain energy in the aluminium component
of the cell, see Table 3.3.

• The viscoelastic material is undergoing pure torsion in the analytical model.
In the finite element model this is the case in much of the material in the
middle but ceases to be so towards the edges of the DSLJ, and this is
where the material sees higher strain energy. These boundary effects
are captured by the finite element model, see Figure 3.14, but not the
analytical. Indeed, the strain energy stored in the viscoelastic material is
slightly higher in the finite element model, see Table 3.3.
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Other assumptions in either the analytical model alone or both models which
are unlikely to account for the difference in loss factor are:

• The strain energy in two cell walls parallel to the loading and thus under
axial stress is small compared to that in the four other walls which are
under flexural stress. This assumption is acceptable for the uniaxial in-
plane loading adopted here. The same assumption was made in the
honeycomb cell model by Gibson and Ashby [17]. The strain energy in
those wall computed in the finite element model is small compared to the
strain energy in the bending wall, see Table 3.3.

The assumptions that are common to both the analytical and finite element
model are:

• The bending of the sandwich panel imposes a tension-compression load-
ing that varies linearly across the depth of the cell. This assumption may
not be exact at the interface between the sandwich skins and the cell
but is valid in the sandwich core. This assumption is commonly used in
sandwich construction; see for example [3].

• The viscoelastic material is treated as if it were linear elastic. Though
this is incorrect the magnitude of the strains under consideration for this
vibration problem are small, and thus differences between linear elasticity
and rubber elasticity will be small [296].

Based on the above assumptions, the finite element model is likely to
produce more accurate results.

(a) (b)

Figure 3.14: Contour plot of the strain energy in a honeycomb cell with a DSLJ
damper (a) and in a DSLJ damper (b). The regions of highest and lowest strain
energy are indicated in red and white, respectively.

51



CHAPTER 3. MODELLING METHODS

Analytical model Finite element model

mass (g) 0.852 0.847

loss factor 0.293 0.143

strain energy stored in the
viscoelastic material (J)

2.96× 10−3 3.41× 10−3

strain energy stored in the
aluminium (J)

6.75× 10−5 3.76× 10−3

strain energy stored in the
angled wall (J)

1.69× 10−5 7.22× 10−4

strain energy stored in the
parallel wall (J)

0 7.84× 10−6

bending strain in the angled wall 4.46× 10−4 1.62× 10−4

in-plane strain in the angled wall 0 4.03× 10−4

shear strain in the angled wall 0 4.68× 10−14

Table 3.3: Comparison of the mass, loss factor and strain energy stored in a
honeycomb cell with a DSLJ insert either computed analytically or via the finite
element method.

3.4.2 DSLJ insert vs CLD

The strain energy density seen by a soft polymer constrained by two parallel and
rigid plates which displace relatively from each other either in rotation (DSLJ
damper) or in translation (CLD) can be found in Figures 3.15 and 3.16. The
DSLJ insert’s damping mechanism generates a higher strain energy per unit
volume in the viscoelastic material than that of the CLD, which implies that more
energy is dissipated. As expected, both damping mechanisms lose efficiency
as the thickness of the viscoelastic layer increases, see Figure 3.16. As the
bending angle of the host structure increases, more strain energy is seen by
the viscoelastic material, which is also expected. For small bending angles, the
DSLJ damper and the CLD show a similar damping efficiency. However as this
angle increases, the DSLJ damper becomes much more efficient than the CLD,
see Figure 3.16.

3.4.3 Honeycomb sandwich structures

The five first mode shapes and natural frequencies of the six structures con-
sidered in this thesis are given in Tables 3.4 and 3.5, respectively. The mode
shapes of the sandwich structures resemble those of a homogeneous plate with
the same boundary conditions. In the case of the SSSS plate, the mode shapes
and natural frequencies found analytically and via the finite element method
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Figure 3.15: Strain energy density in the viscoelastic material contrained either
by a CLD or a DSLJ damper when the host structure bends by an angle α. The
thickness of the vicoelastic layer is kept constant at hi = 1mm.

are similar, which suggests that the finite element models are correct. The
amplitude response of the SFSF plate is shown in Figure 3.17. As expected, a
peak in amplitude corresponds to each modal frequency, suggesting that the
FRF is computed correctly.
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Figure 3.16: Strain energy density in the viscoelastic material contrained either
by a CLD or a DSLJ damper as the thickness of the viscoelastic layer varies from
0.001 mm to 3 mm. The bending angle of the host structure is kept constant at
α = 10°.
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Table 3.4: First five mode shapes of the honeycomb-core sandwich structures considered in this thesis.

Mode CF beam SS beam CFFF plate FFFF plate SFSF plate SSSS plate (FE) SSSS plate (Analytical) [294]

1 155 1611 130 787 457 1611 1398
2 310 2359 446 789 820 2359 2059
3 918 3524 766 1693 1336 3524 3830
4 1391 3630 1048 2026 1891 3630 4113
5 1809 3983 1417 2245 2617 4190 4915

Table 3.5: First five natural frequencies (in Hertz) of the structures considered in this thesis.
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Figure 3.17: The amplitude response of the SFSF sandwich plate when the
structure is excited in one corner and the response is measured at the opposite
corner, showing the first five modes.

3.5 Conclusion

An analytical model of the DSLJ damper within a regular honeycomb cell was
derived and compared with its equivalent finite element model. The aim was
twofold: (i) to describe how the DSLJ damper deforms the viscoelastic material
in shear caused by the rotation of the three rigid elements relatively from each
other, thus dissipating energy. A block of polymer constrained by this shearing
mechanism sees a higher strain energy density than one constrained by a CLD,
which exploits relative translations instead of rotations between constraining
elements. This suggest that the DSLJ damper may be more efficient than the
CLD in terms of damping generated per unit mass added in the host structure.
The performance of both the DSLJ and the CLD will be compared in the next
chapter. (ii) to ensure that the finite element model derived gives a reliable
description of the damping mechanism occurring in a DSLJ when the sandwich
structure undergoes out-of-plane flexural vibrations.

The various sandwich geometries examined later in this thesis, namely the
CF beam, SS beam, CFFF plate, FFFF plate and SFSF plate, were modelled
using the finite element method and their first five natural frequencies and mode
shapes were given for future reference. The amplitude response of the SFSF
sandwich plate was also provided. The analytical and finite element solutions of
the SSSS sandwich plate gave comparable eigenmodes and eigenfrequencies,
thereby suggesting that the finite element model is sufficiently accurate and
reliable.
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Chapter 4

Viscoelastic damper comparison

4.1 Introduction

The review of the literature showed that extensive research has been carried
out on passive damping of structures using CLDs, including optimisation of their
location and extent. In this chapter, a simple parametric approach based on
the strain energy distribution of a particular mode shape will be used to deter-
mine the optimal distribution of DSLJ dampers on honeycomb-core sandwich
beams and plates under simply supported and cantilever boundary conditions.
The performance of the DSLJ configuration will then be compared to some
optimised CLD configurations for beams and plates, albeit adapted for the
present structures. The objective is to identify the most mass efficient CLD
and DSLJ configurations for these structures via numerical simulation using the
finite element method. The work presented in this chapter is also described
in the article entitled “A novel viscoelastic damping treatment for honeycomb
sandwich structures” [297] published in Composite Structures in 2015.

4.2 Methods

The structures considered here are the cantilever and simply supported honeycomb-
core sandwich beam and plate described in the previous chapter. The CLD
patches were modelled using a 8-noded brick element with 3 degrees of free-
dom per node (SOLID185 in ANSYS) for both the viscoelastic and constraining
layers. The viscoelastic material is the same as the one used to model the DSLJ
damper and the material properties are as those given in Chapter 3. Preliminary
results indicated that for both beams and plates in both the cantilevered and
simply supported modes, the first mode accounts for the largest fraction of
the modal participation factor when the 10 first modes are considered. Similar
results can be found in reference [298]. Hence only the first mode was consid-
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ered further herein, though the same method could be applied to any modes of
interest.

Adapted from Damper location and geometry
Optimisation
technique

Hajela and
Lin [203]

Genetic algorithm

Marcelin et
al. [204]

Method of the
moving
asymptotes

Hau and
Fung [299] 1

Multi-objective
genetic algorithm

DSLJ (cantilever
beam) [288]

Parametric study

Pau et al. [213]
Sequential
quadratic
programming

Zheng et al. [210] Genetic algorithm

Hou et al. [216] Genetic algorithm

DSLJ (simply
supported
beam) [288]

Parametric study

Kim [218] Genetic algorithm

1These solutions are for hybrid dampers.
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Ling et al. [219]
Method of the
moving
asymptotes

DSLJ (cantilever
plate) [288]

Parametric study

Ling et al. [219]
Method of the
moving
asymptotes

Hou et al. [220] Genetic algorithm

Chen and
Huang [208]

Topographical
method

Zheng et al. [227]
Method of the
moving
asymptotes
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DSLJ (simply
supported
plate) [288]

Parametric study

Table 4.1: Benchmarked optimised damper configurations for beam and plate
structures. The sandwich skins are shown removed for clarity. The presence of
a damper is given by solid colouring (CLD) or inserts in cells (DSLJ). Boundary
conditions are indicated by solid triangles (encastred) and open circles (pinned)
for the cantilever and simply supported cases, respectively.

4.2.1 Positioning of the DSLJ inserts

A simple and effective method for identification of the optimal position of a
damper on a vibrating structure is to locate the area of maximal strain energy
via the MSE method, as for example by Marcelin et al. [204]. Therefore, DSLJ
dampers might be rationally placed at locations of high modal curvature where
strains are maximal [40] i.e. near the clamped edge for a cantilever structure
and at the middle for a simply supported structure. A parametric optimisa-
tion based on this approach, similar to that of Sher and Moreira [182], was
adopted to identify the most efficient number of DSLJ inserts on the cantilever
and simply supported beam and plate structures. Rows of honeycomb cells
were sequentially filled with DSLJ inserts, starting at the clamped end for the
cantilever geometries and from the middle for the simply supported geometries.
The evolution of the modal loss factor with the increase in mass was recorded
and an optimal number of DSLJ inserts was identified for each configuration
based on the loss efficiency Efη (defined in Equation 4.2). A further parametric
study was used to determine the optimal thickness of the viscoelastic element
in the DSLJ dampers. In this case, the thickness of the DSLJ insert was varied
from 0.25 to 2.33 mm and its optimal value was identified by the highest modal
loss factor produced.

4.2.2 CLD and DSLJ dampers comparison

The present analysis is essentially a comparison of two damping structures,
CLDs and DSLJ, the former in configurations identified in the literature, using
the finite element method. Specifically, the amplitude, frequency and modal
loss factor are calculated both before and after the addition of the dampers to
the honeycomb-cored sandwich structures. Configuration of CLDs identified for
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hybrid dampers were also included, i.e. those utilising active elements such as
piezoelectric ceramics, however a passive-only viscoelastic material replaced
the piezoceramic element. The literature hybrid CLD damper configurations
had been through optimisation processes, albeit in their active modes.

The CLD optimisation studies from the literature [203, 204, 208, 210, 213,
216,218–220,227,299] presented their optimal CLD configurations in slightly
different formats. They were adapted to conform to either a beam or plate
structure and in a consistent format for ease of comparison. The dimensions
and locations of CLDs were taken from the original studies and implemented
pro rata on the beam and plate used herein, as illustrated in Table 4.1. For
example, Hou et al. [216] identified a CLD which stretched from 40% to 52% of
the total length of their simply supported beam, and this was reconfigured to
be the same proportion of the beam used in this study. Some of the literature
studies did not optimise parameters such as the thickness of the viscoelastic
layer (for example Zheng [210]), but will be explored and optimised in this study.
An identical core configuration was used across all beam and plate cases. The
vibration amplitude and frequency of the first mode was first computed and the
change in amplitude and frequency was compared across the literature CLD
and DLSJ configurations. Mass-efficient configurations were identified for each
structure and set of boundary conditions. The amplitude reduction efficiency
Efa was defined as follows:

Efa =
A

ma

(4.1)

where A is the amplitude reduction relative to the undamped structure and ma

is the additional mass of the dampers as a proportion of the native structure’s
mass.

A second comparison was made in which the thickness of the viscoelastic
material in both dampers was varied and the modal loss factors calculated
using both the Modal Strain Energy (MSE) approach [28] and the Half-Power
Bandwidth (HPB) method [24] as described in Chapter 2. The thickness of the
viscoelastic layer was increased from 0.2 to 2.7 mm for the CLDs and from 0.25
to 2.33 mm for the DSLJ inserts. These values allow to explore a wide range of
thicknesses while keeping the design feasible under manufacturing constraints.
The loss efficiency Efη was defined similarly as:

Efη =
η1

ma

(4.2)

where η1 is the modal loss factor of the first mode and ma is the additional mass
of the dampers as a proportion of the native structure’s mass.
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4.3 Results

The present finite element model was benchmarked against the work by Chia
et al. [13], in which they predicted a loss factor ratio per unit mass of 1.35
(see Table 2 in [13]) for one CLD configuration (see Figure 7 in [13]). The
same configuration modelled in this study predicted a loss factor ratio per unit
mass of 1.34. This close match validates the method used here for adapting
the literature configuration and demonstrates the present model’s suitability for
simulating the damping mechanism of the CLD and by extension the DSLJ. In
this section, the modal loss factor will be calculated using the MSE method here
and it is shown in Table 4.3 that very similar values can be obtained using the
HPB method.

4.3.1 Parametric optimisation of the DSLJ inserts

Figure 4.1a shows the loss efficiency Efη vs the added mass in percent as the
honeycomb cells were filled rows by rows with DSLJ inserts for all structures.
For all structures the peak loss efficiency was identified when only one row was
filled with DSLJ inserts. It then decreased rapidly as more rows of cells were
filled. A compromise solution was selected arbitrarily between maximal loss
efficiency and maximal added mass, specifically was 5 rows filled with inserts
(out of 17) for the beams and 6 rows filled (out of 19) for the plates. These
configurations were used in further comparisons.

The effect of viscoelastic thickness on the loss efficiency Efη in the DSLJ is
shown in Figure 4.1b. There is an inverse relationship between the thickness
of the viscoelastic element and the loss efficiency in the DSLJ. The thickness
of the DSLJ damper affects rapidly its performance, and whilst the optimal
thickness within this study was 0.5 mm, it seems likely that even thinner so-
lutions would have higher damping efficiencies. The configurations with the
thinnest viscoelastic layer were selected for later comparison. These selected
configurations on cantilever beam, simply supported beam, cantilever plate
and simply supported plate exhibited a peak modal loss factor of 1.52×10-3,
1.34×10-3, 1.66×10-3 and 1.50×10-3, respectively.

4.3.2 CLD and DSLJ dampers comparison

Amplitude and frequency comparison

The amplitude response of the first mode is shown in Figures 4.2a - 4.5a for
both the CLD and DSLJ configurations, with the undamped beam or plate for
comparison. In the Figures 4.2a - 4.5a the amplitude is shown vs frequency
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Figure 4.1: Loss efficiency Efη vs the additional mass as a percentage of the
total mass of the undamped structure, as rows of cells are filled sequentially
with DSLJ inserts on all structures (a) or as the thickness of the viscoelastic
element is increased from 0.25 to 2.33 mm (b).

in absolute units, whereas in Figures 4.2b - 4.5b it is shown vs frequency
normalised to the natural frequency of each case, in order to show more clearly
the individual differences in amplitude response. In most cases the dampers
reduced the amplitude response vs the undamped structures, as would be
expected. The DSLJ damper was competitive in all case and even showed the
largest amplitude reduction in the simply supported beam and cantilever plate
configuration, see Figures 4.3a and 4.3b. It exhibits an amplitude reduction of
64% (cantilever beam), 53% (simply supported beam), 67% (cantilever plate)
and 54% (simply supported plate) from the undamped configuration. The
amplitude reduction efficiency Efa of the DSLJ damper is 18, 24, 3 and 4
times higher than the best CLD configuration on the cantilever beam, simply
supported beam, cantilever plate and simply supported plate, respectively, see
Table 4.2. It can be seen that the high amplitude reduction efficiency noted
for the DSLJ configuration correlates with a high strain energy density in the
viscoelastic material.

In most cases the dampers also produced a decrease in natural frequency,
with some cases showing large reductions, e.g. the CLD configuration by
Ling [219] reduced the natural frequency by almost 44%, see Figure 4.4a.
In almost all cases, the DSLJ damper produced the least change in natural
frequency, except for the simply supported case where the natural frequency
was reduced by 14%. In three cases the frequency was increased by the
damper, and the ratio of modal stiffness to modal mass for these cases was
larger vs the undamped versions; the DSLJ cantilevered beam (Figure 4.1b),
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Figure 4.2: (a) The amplitude of the cantilever beams excited at their first
modes. The vibration amplitude (X) of each structure is normalised to that of the
undamped structure(X0). (b) Detail of the distribution of the vibration amplitude
about each resonant frequency.
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Figure 4.3: (a) and (b) as per Figure 4.2a and 4.2b but for the simply supported
beam.

the Kim CLD [218] and DSLJ cantilevered plate (Figure 4.3a).

Loss efficiency comparison

The loss efficiencies Efη for the CLD and DSLJ damper in all of the structures
along with their added masses as a percentage of the total mass of the un-
damped structure are shown in Figures 4.6a - 4.7b. In all cases and for all
types of dampers, the loss efficiency Efη decreased as the thickness of the
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Figure 4.4: (a) and (b) as per Figure 4.2a and 4.2b but for the cantilever plate.
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Figure 4.5: (a) and (b) as per Figure 4.2a and 4.2b but for the simply supported
plate.

viscoelastic layer was increased. DSLJ configurations were generally lighter
and more efficient at low added mass than CLD configurations, except for the
simply supported plate case where the CLD configuration proposed by Chen
and Huang [208] achieved comparable loss efficiency at lower added mass. For
example the DSLJ damper was more than 5 times more efficient than the best
CLD damper for the cantilevered beam, see Figure 4.6a. The stars on Figures
4.6a - 4.7b indicate the added mass of the CLD configuration as proposed in the
original study where those authors considered the thickness of the viscoelastic
layer as an optimisation parameter. In these cases there are CLD configurations
identified here which were more efficient than those originally identified by the
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A (%) ma (%) Efa uvem (%)

Cantilever beam
Hajela and Lin [203] 73 287 0.25 1.61
Marcelin et al. [204] 31 151 0.12 9.68
Hau [299] 2 31 128 0.24 13.09
DSLJ [288] 64 14 4.57 100

Simply supported beam
Pau et al. [213] 9 117 0.08 19.17
Zheng et al. [210] 21 179 0.12 46.99
Hou et al. [216] 11 70 0.16 207.21
DSLJ [288] 53 12 3.79 100

Cantilever plate
Kim [218] 56 67 0.84 31.05
Ling et al. [219] 52 196 0.26 6.65
DSLJ [288] 67 19 3.53 100

Simply supported plate
Ling et al. [219] 23 27 0.85 45.11
Hou et al. [220] 64 123 0.52 7.57
Chen and Huang [208] 12 19 0.63 63.11
Zheng et al. [227] 69 652 0.11 18.24
DSLJ [288] 54 19 6.84 100

Table 4.2: Relative amplitude reduction A, additional mass ma, amplitude
reduction efficiency Efa and strain energy density in the viscoelastic material
uvem at peak amplitude for all configurations. The amplitude reduction and
amplitude reduction efficiency are relative to the undamped structure. The
strain energy density in the viscoelastic material is relative to that of the DSLJ
structure.

authors, for example the CLD configuration as proposed by Hou [220] was more
efficient with a thinner viscoelastic layer, see Figure 4.7b. Table 4.3 gives the
values for peak modal loss factor, relative added mass and loss efficiency at
peak amplitude for all configurations. The two techniques used to calculate
the modal loss factor, i.e. the MSE and the HPB methods, demonstrated very
similar results.
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Figure 4.6: Comparison of the loss efficiency Efη vs added mass for the
cantilever (a) and simply supported (b) beam solutions.
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Figure 4.7: Comparison of the loss efficiency Efη vs added mass for the
cantilever (a) and simply supported (b) plate solutions.
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η1(×10−4) MSE η1(×10−4) HPB ma (%) Efη(×10−6)

Cantilever beam
Hajela and Lin [203] 5.19 5.65 71 7.31
Marcelin et al. [204] 5.25 5.62 33 15.8
Hau [299] 3 6.10 7.33 11 47.1
DSLJ [288] 15.2 13.33 18 85.0

Simply supported
beam
Pau et al. [213] 5.29 5.45 11 47.1
Zheng et al. [210] 5.00 5.08 18 27.1
Hou et al. [216] 5.03 5.11 10 48.7
DSLJ [288] 13.4 9.98 18 75.3

Cantilever plate
Kim [218] 17.1 23.78 65 26.4
Ling et al. [219] 5.02 7.10 52 9.73
DSLJ [288] 16.6 14.33 23 70.8

Simply supported plate
Ling et al. [219] 5.01 5.17 32 15.8
Hou et al. [220] 30.0 27.59 49 61.8
Chen and Huang [208] 5.00 5.15 8 59.2
Zheng et al. [227] 21.8 19.52 64 33.7
DSLJ [288] 15.0 10.63 23 64.0

Table 4.3: Modal loss factor η1 and additional mass relative to the undamped
structure ma at peak loss efficiency Efη for all configurations. The modal loss
factor was estimated by means of both the Modal Strain Energy (MSE) and the
Half-Power Bandwidth (HPB) methods.
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4.4 Discussion

The parametric optimisation of the DSLJ damper revealed that a single row
of inserts is the most efficient for both cantilevered and simply supported
structures, and a small number of inserts (5 or 6 rows in these cases) is a good
compromise between peak loss efficiency Efη, large modal loss factor and
added mass, see Figure 4.1a. The DSLJ damper was most effective when the
viscoelastic layer was thin, see Figure 4.1b. For a given global deformation the
strain energy density in the viscoelastic layer was higher when the layer was
thinner. There will likely be some practical manufacturing limits on the thickness
of the viscoelastic layer, as well as other possible limits arising from the ultimate
shear strain and adhesive strength of the viscoelastic material.

The DSLJ configurations were best for amplitude reduction for most configu-
rations though not all, and were competitive with all the CLD configurations, in
both absolute and mass efficient reduction. This is due to the fact that the strain
energy in the viscoelastic material was usually higher in the DSLJ damper than
in a CLD for a given global strain (see Table 4.2). The DLSJ damper therefore
appeared to be a more effective way of configuring viscoelastic material in order
to reach a higher loss factor. The exceptions were Hajela and Lin [203] and
Zheng [227] in the cantilevered beam and simply supported plate cases, both
of which showed the highest amplitude reduction. However this was at the
cost of high added mass and coverage of most of the surface. Indeed, the
amplitude reduction efficiency Efa was always the highest for all configurations.
The hybrid CLD proposed by Hau [299], which was never designed to operate
purely passively, did not perform well in comparison to other configurations.

In most cases the dampers reduced the natural frequency as might be
expected. In some notable cases however the dampers raised the ratio of
modal stiffness to modal mass and therefore the resonance frequency (see
Figures 4.2a and 4.4a). With weight efficient dampers it should be possible in
many cases to conserve initial model frequencies when adding dampers.

There was an inverse relationship between the loss efficiencies Efη for
both the CLD and DSLJ configurations and the viscoelastic layer thickness,
see Figs. 4.6a - 4.7b. The thickness of the viscoelastic layer was the primary
determinant of the strain and strain energy density in the viscoelastic layer,
and thus efficiency of the dampers in this study using both the MSE and HPB
methods. The loss efficiency is very sensitive to the DSLJ thickness. As with
amplitude reduction the data for loss efficiency indicate that DSLJ tend to be
more efficient because the viscoelastic layer sees higher strains for given global
deformations. For example, the DSLJ configuration had a loss factor of almost
twice of that of the Hou CLD configuration (1.14×10-3 and 5.62×10-4 for the
DSLJ and CLD configurations, respectively), see Figure 4.6b. The exception
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was in the simply supported plate with the configuration of Chen [208], i.e. a
small patch in the centre of the plate, which was more mass efficient than the
DSLJ, see Figure 4.7b and Table 4.3.

It was shown analytically in Chapter 3 that the DSLJ’s damping mechanism
exploits the damping material more effectively than that of the CLD, i.e. more
strain energy is generated in the viscoelastic material per unit volume. Indeed,
the DSLJ is sensitive to both internal shear and flexure of the base structure
whereas the CLD’s shearing mechanism is only due to flexure. In this chapter,
the numerical predictions confirmed that the viscoelastic material sees higher
shear strain energy per unit volume in a DSLJ damper than in the CLD configu-
ration explored here, see Table 4.2. Hence for applications where the lightweight
properties are critical, the DSLJ damper can be an efficient alternative to the
CLD.

4.5 Conclusion

This chapter presents the performance of a new kind of viscoelastic damper for
honeycomb sandwich structures and compares its efficiency to benchmarked
optimal configurations of CLDs on beam and plate structures. It provides a
parametrically optimised configuration for DSLJ dampers for beams and plates
structures under both cantilever and simply supported boundary conditions.
This simple parametric method works well in most of the cases considered
here. A more sophisticated optimisation approach will be adopted in the next
chapters.

The new DSLJ inserts exhibit an excellent ability to damp vibrations for
small increases in mass, in terms of both amplitude reduction and modal loss
factor. They also generally produce a smaller shift in natural frequency from
the undamped structure which may be an important asset for many transport
applications. Therefore, DSLJ inserts represent a competitive alternative to
CLDs. Since they are internal to the honeycomb cell, they can be implemented
in applications where adding dampers externally is difficult. This may be the
case for gas turbine blades with large internal void spaces convenient for DSLJ
deployment, but which cannot have external dampers interfering with air flow. If
deployed in honeycombs, the orientation of the DSLJ damper can be altered,
raising the possibility for tuning of orientation according to global vibration
modes.
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Chapter 5

Parametric optimisation of the
DSLJ damping inserts

5.1 Introduction

As discussed in the introduction chapter, fuel efficiency in transport is currently
of considerable interest, mainly because fuel consumption is the principal
source of expenditure in commercial transport. One of the most effective
ways of improving fuel efficiency is to manufacture lighter vehicle structures.
However, slender and lighter structures are also prone to higher vibration levels,
leading to higher fatigue cycles and more severe damage in the structural
components. There is therefore a desire to combine lightweight structures
with vibration damping in transport vehicles. However, light and stiff materials
are not usually inherently lossy, meaning that increasing vibration damping in
a structure generally leads to increasing its mass and vice-versa. It is often
necessary to seek a compromise between these two contradictory properties in
order to determine which damper configuration yields the optimal performance.

This compromise can be effectively identified using a so-called parametric
study, such as the one adopted by Kung and Singh [175, 176], whereby a
design parameter is altered iteratively in order to determine its optimal value.
As we have seen in Chapters 2 and 4, such problems can also be successfully
tackled using heuristic optimisation algorithms. However, this approach can
be computationally expensive and difficult to implement. The question arises
whether such evolutionary methods are necessary or whether simpler paramet-
ric approaches can yield a similar quality of results. In this chapter, attention is
focused on implementing a parametric method to determine the optimal location
and orientation of DSLJ dampers in a honeycomb-cored sandwich plate, with
the objective of simultaneously minimising the total mass and maximising the
damping in the structure. This relatively quick and simple parametric approach is
based on the strain distribution of the mode shape of each structure considered.
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In Chapter 6, the performance of this parametric approach will be compared
to that of an evolutionary optimisation algorithm. The methods, results and
discussion presented in this chapter are partly described in the article “Multi-
objective optimisation of viscoelastic damping inserts in honeycomb sandwich
structures” [300] published in Composite Structures in 2015.

5.2 Methods

The approach taken here consisted in determining the distribution (i.e. locations
and orientations) of DSLJ dampers that achieves the highest damping for the
least additional mass onto the structure. The structure chosen was a rectangular
sandwich panel with a honeycomb core with 10×10 hexagonal cells plus 9×9
interleaving cells, making a total of 181 cells. The plate was considered in both
cantilevered and free boundary conditions. The first and second mode shapes
of such structures, along with their respective natural frequencies, are illustrated
in Table 5.1 for both types of boundary conditions. The finite element model
was presented in Chapter 3, along with the materials properties. The size of
the panel was chosen so as to provide the subsequent optimisation with a large
enough search space, while keeping the computational cost within reason. For
this particular problem, there are four possible damper configurations within the
hexagonal cell – absent or one of three orientations, as illustrated in Figure 5.1.
This makes a total of 4181 combinations or potential damper configurations; too
large a solution space to evaluate every solution.

The parametric optimisation method was based upon deformation data taken
from the mode shape of a sandwich panel without any inserts, i.e. the empty
panel. For each hexagonal cell in the empty panel core, the distance between
two opposite vertices was calculated in the undeformed and deformed cases.
Using the notation defined in Figure 5.2, the intracellular strain was calculated
as follows,

εAB =
‖−→AB‖ − ‖−−→A′B′‖

‖−→AB‖

εCD =
‖−−→CD‖ − ‖−−→C ′D′‖

‖−−→CD‖

εEF =
‖−→EF‖ − ‖−−→E ′F ′‖

‖−→EF‖

(5.1)

where ‖.‖ is the Euclidean norm. The algorithm used to extract these vertex-to-
vertex strain data was implemented in ANSYS Parametric Design Language
(APDL) and it is shown in Appendix C. The absolute values of these strains
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Mode number
Cantilever boundary

conditions
Free boundary conditions

Mode 1

129 Hz 785 Hz

Mode 2

443 Hz 788 Hz

Table 5.1: First and second mode shapes of the sandwich plate under cantilever
and free boundary conditions, along with their corresponding natural frequency.
The colours of the mode shapes indicate the nodal displacements, with red being
maximal and blue minimal. The encastered boundary condition is represented
by black lines on the left of the cantilevered structures.

were then ranked in descending order and the DSLJ dampers were oriented and
placed successively between the corresponding opposite vertices. This process
assumes that larger deformation in the DSLJ damper would result in higher
strain energy in the viscoelastic material, thus yielding a higher modal loss factor.
This process was repeated iteratively, adding further DSLJ dampers until all
cells were occupied. Sets of weight- and damping- efficient configurations could
thus be identified for each of the four cases considered here. The damping
efficiency is an indicator of the performance of the DSLJ inserts in terms of
damping and weight reduction. It is defined as the ratio of the modal loss factor
η to the total mass of the structure m:

Ef =
η

m
(5.2)
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Figure 5.1: Four possible DSLJ damper configuration within a hexagonal hon-
eycomb cell – absent or one of the three orientations.
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Figure 5.2: A deformed (green) and undeformed (black) honeycomb cell.

5.3 Results

5.3.1 Optimised configurations

The optimised distributions of DSLJ dampers on the cantilever and free sand-
wich plates are presented in Figures 5.3 to 5.6. For clarity purposes, only 20 out
of the 181 configurations obtained were represented. For the cantilever plate
under its first mode (flapping), the optimal orientation of the DSLJ dampers in
parallel to the long dimension of the plate, see Figure 5.3. Under the second
mode (torsional), the optimised orientations for damping inserts are angled at
either ±60° to the long axis of the plate, as illustrated in Figure 5.4. For the
sandwich plate under free boundary conditions, the optimal locations tend to be
near the centre of the plate. In the first mode (bending) the damping inserts are
optimal when oriented axially (see Figure 5.5), as opposed to the second mode
(torsion) where the best orientation tends to be radially outwards (see Figure
5.6).
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Figure 5.3: Optimised distributions of DSLJ dampers on the cantilever sandwich
plate under mode 1 (flapping mode).
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Figure 5.4: Optimised distributions of DSLJ dampers on the cantilever sandwich
plate under mode 2 (torsion mode).

5.3.2 Mode veering

The evolution of the damping efficiency with the number of DSLJ inserts added
is shown in Figures 5.7 and 5.8. In the cantilever case, the number of DSLJ
dampers corresponding to the maximum damping efficiency can be identified i.e.
87 and 117 inserts when the first and second modes are targeted, respectively
(see Figure 5.7). After this point, the rate at which the sandwich plate gets
heavier is higher than the rate at which the modal loss factor increases. The
optimal number of insert corresponds to the point where the derivative of the
damping efficiency becomes zero.

In the case of the sandwich panel under free boundary conditions, an
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Figure 5.5: Optimised distributions of DSLJ dampers on the free sandwich plate
under mode 1 (bending mode).
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Figure 5.6: Optimised distributions of DSLJ dampers on the free sandwich plate
under mode 2 (torsion mode).

interesting phenomenon has occurred: the addition of a few damping inserts
induced a swap in the order of the natural frequencies, known as mode veering.
Specifically, the erstwhile second mode (a torsion mode originally at 788 Hz)
had its frequency decline below the frequency of the erstwhile first mode (a
bending mode originally at 785 Hz). This phenomenon can be highlighted by
studying the evolution of the natural frequencies as the number of dampers
increases. In the cantilever case, the first two natural frequencies are separated
enough not to interact with each other, see Figure 5.9. However in the case
of the free plate, the first two modal frequencies are originally close and the
alteration of the structure causes them to collapse towards each other and
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then ‘veer away’, see Figure 5.10b. Mode veering is clearly evident between
configurations 13 and 14, 17 and 18, and 18 and 19. The second mode shapes
of the 20 optimised configurations that supposedly attempted to target the
second mode (torsion) of the free plate are shown in Figure 5.11 and mode
veering is also manifest between the same configurations. The optimiser was
designed to damp the mode shapes corresponding to those of the undamped
structure, assuming the order of the natural frequencies remained the same all
along the optimisation process. However, the order in which the finite element
eigensolver extracted the first and second eigenvalues swapped as dampers
were added to the structure, leading the parametric optimiser to place and
orient the dampers inadequately. The damping efficiency in Figure 5.8 rises
dramatically when the second mode switches from torsion to bending because
by chance the solutions proposed for torsion were much more effective than
those originally intended for the bending mode. This shows that the underlying
assumption that placing a damper at location of high vertex-to-vertex strain
generates high damping is not strictly exact in all cases, especially when veering
is present.

5.4 Discussion

A simple and quick parametric approach has been successfully implemented to
optimise the location and orientation of DSLJ dampers deployed in a honeycomb-
core sandwich plate under cantilever and free boundary conditions. 181 config-
urations optimised to damp the first and second vibration mode were identified.
In both of the cases considered here, the optimiser identified configurations with
much higher damping efficiency than the empty native structure, suggesting
that it is a suitable approach to tackle this kind of problem (see the dashed line
in Figures 5.7 and 5.8). The parametric optimiser placed the DSLJ inserts in
priority in regions of high strain energy for each mode shape, as could have
been expected. For instance, the highest strains on the cantilevered plate is
near the clamped edge for modes 1 and 2 (see Figures 5.3 and 5.4), and at
the middle for the free plate (see Figures 5.5 and 5.6. Earlier research also
concluded that placing a constrained layer damper in regions of high strain
energy is more mass-efficient; see for example [166].

This parametric optimiser does not account for the additional mass and
stiffness which is inevitable when dampers are inserted in the structure. This
has two consequences, (i) the vertex-to-vertex strain distribution across the
structure changes with additional mass and stiffness, ergo the optimal location
and orientation of DSLJ inserts changes, (ii) the additional mass and stiffness
can cause veering, i.e. a change in the order of natural frequencies of modes,
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Figure 5.7: Damping efficiency versus the number of DSLJ inserts for the
cantilever plate. The numbers correspond to the configuration numbers shown
in Figures 5.3 and 5.4 for mode 1 and 2, respectively. The optimal number of
DSLJ is identified by an arrow for each mode.

which can radically alter the efficacy of the dampers. For instance, mode veering
has occurred when attempting to damp the second (torsion) mode of the free
plate (see Figures 5.8, 5.10 and 5.11), leading to an inadequate placement of
the damping inserts for the mode targeted initially. The reason for this is that
the parametric approach adopted here places and orients the dampers based
on the intracellular vertex-to-vertex strain of the mode shapes of the undamped
structure. However, it was assumed here that such strain would remain the
same during the optimisation process, which is not always the case especially
when veering occurs.

Mode veering is a well-known phenomenon which has been identified as
early as 1973 by Nair [301] and Leissa [302]. It is more likely to happen when
neighbouring modes are close in frequency, which is the case here for the
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Figure 5.8: Damping efficiency versus the number of DSLJ inserts for the
free plate. The numbers correspond to the configuration numbers shown in
Figures 5.5 and 5.6 for mode 1 and 2, respectively. The second mode shape of
configurations 13, 14 and 18 is indicated.

free sandwich plate (785 Hz and 788 Hz for modes 1 and 2, respectively). It
is possible to predict the occurrence of mode veering, for instance using the
veering index derived by Dubois et al. [303]. This index, based on the eigenvalue
sensitivity of the system, can identify mode veering due to alteration of the mass
or the stiffness without any prior knowledge of the structure studied. It should be
computed before using any optimiser that does not update its quality measures
during optimisation, as it is the case here.

The particular parametric optimisation approach adopted here is quite time-
efficient and computationally inexpensive, requiring only one initial finite element
evaluation to deduce the optimal configurations. However in this case, it was
possible to constrain the problem to a relatively small solution space, generated
by the intracellular strain data. If it is not possible to do this, parametric optimisa-
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(a) Solutions optimised for mode 1.
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(b) Solutions optimised for mode 2.

Figure 5.9: First and second eigenfrequency versus the the number of DSLJ
inserts for the cantilever plate. The numbers correspond to the configuration
shown in Figures 5.3 and 5.4 for mode 1 and 2, respectively.
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(a) Solutions optimised for mode 1.
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Figure 5.10: First and second eigenfrequency versus the the number of DSLJ
inserts for the free plate. The numbers correspond to the configuration shown
in Figures 5.5 and 5.6 for mode 1 and 2, respectively. The presence of mode
veering is identified by green circles.

tion can require enormous computational power, for instance if we considered
all possible combinations of damper orientation and location for many modes.
Since it only requires calculating the nodal strains between the honeycomb cell
vertices, it is also relatively simple to implement while combined with a finite
element model.
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Figure 5.11: Second mode shape corresponding to the configurations shown in
Figure 5.6 (Free plate optimised for its second torsion mode).

5.5 Conclusion

In this chapter, the optimal location and orientation of DSLJ dampers in a honey-
comb sandwich structure have been determined using a parametric approach.
This parametric method is fast, simple to implement, requires low computer
power and may be very efficient, especially in some simple cases (see Figure
5.7). However the mass and the stiffness of the structure may be altered during
the optimisation process, which may affect the mode shape geometry or even
shift the modal frequencies, causing mode veering. In such cases, the paramet-
ric approach places and orients the dampers in an inadequate manner which
severely detracts from their efficiency. This parametric algorithm is exposed to
mode veering because the quality measures of its optimisation mechanism are
not dynamically updated during the optimisation process. Therefore, extreme
care should be taken when attempting to tackle a problem whose properties and
nature may change during optimisation. The veering index of the system [303]
should be computed prior to using parametric optimisers applied to vibration
problems. If such phenomenon is likely to occur during the process, a more
robust and sophisticated optimisation approach should be adopted. It will be
shown in the next chapter that evolutionary optimisation techniques can effec-
tively cope with the coupling between objective values and optimised design
geometries, and can thus be an effective alternative to parametric studies.
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Chapter 6

Evolutionary optimisation of DSLJ
damping inserts

6.1 Introduction

The transport industry has long been striving for both lighter and better damped
vehicles in an effort to simultaneously reduce fuel consumption, passenger
discomfort and fatigue in structural parts. However, weight reduction and
increase in damping are usually competing objectives and a compromise must
be made between low vibration levels and addition of mass. In the previous
chapter, a parametric approach was implemented to optimise the location and
orientation of DSLJ dampers deployed in a standard honeycomb sandwich
plate. Although this approach was relatively quick and straightforward, it may
not yield reliable results, especially in situations where mode veering is present.
This problem can be tackled effectively by using a more complex and robust
optimisation method such as heuristic optimisation algorithms. In this chapter,
the location and orientation of DSLJ dampers on a honeycomb-cored sandwich
plate are optimised using a multi-objective evolutionary algorithm, namely the
adaptive Indicator-Based Evolutionary Algorithm (IBEA) [304]. The objective
is to identify the configurations that generate the maximum damping for the
least additional mass. The performance of the parametric and evolutionary
optimisation methods are compared in terms of damping efficiency and absolute
values of modal loss factors and mass. The methods, results and discussion
presented in this chapter are also described in the article entitled “Multi-objective
optimisation of viscoelastic damping inserts in honeycomb sandwich structures”
[300] published in Composite Structures in 2015.
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6.2 Methods

The objective here is to determine the optimal location and orientation of DSLJ
dampers in the same honeycomb sandwich plate geometry and sets of boundary
conditions considered previously in Chapter 5, but this time using a multi-
objective evolutionary optimisation technique rather than a parametric approach.
The purpose of an optimisation algorithm is to return the minimum or maximum
of one or more objective values which can be expressed as a function of decision
vectors for a particular problem [305]. Contrary to brute-force search or even
parametric methods, heuristics optimisation techniques are very often better
suited for problems with a large number of potential solutions. Since the DSLJ
damper can be inserted in four different configurations within the hexagonal cell
(absent or one of three orientations), there are 4181 combinations possible (or
search space cardinality) for this particular problem.

6.2.1 Evolutionary optimisation

The adaptive Indicator-Based Evolutionary Algorithm (IBEA), introduced by
Zitzler and Künzli [304], is a modern set-based multi-objective evolutionary algo-
rithm. Although there are successful point-based optimisers for multi-objective
design problems (e.g. simulated annealing [306]), using a set-based optimiser
has a number of benefits for this type of design problem. The recombination of
designs that crossover provides allows the algorithm to make larger movements
in the search space, but within regions bounded by already ‘good’ solutions.
The small refinements (such as mutations) used in point-based approaches
are also exploited here, so this ability is not sacrificed. Furthermore, from a
scalability standpoint, population-based optimisers are parallelised relatively
easily, with the evaluation of each member fed to a different core, which enables
computationally expensive optimisation problems to be tackled. Point-based ap-
proaches cannot be transferred as directly into parallel architectures. Set-based
optimisers are also less likely to be stuck at a local optimum as may be the case
for point-based algorithms such as hill climbing search algorithms for instance.

A multi-objective optimiser aims at identifying a good estimate of the Pareto
set of designs for a particular problem. That is, those designs for which it
is impossible to improve performance on one objective, by varying its design
parameters, without causing a degradation in performance of one or more other
objective. In the case of minimisation problems, a legal design x1 is said to
dominate another legal design x2, denoted x1 � x2, iff fi(x1) ≤ fi(x2) for all
objective functions fi(·) such as fi(x1) 6= fi(x2). The Pareto set of designs
is therefore defined as P = {x ∈ X| 6 ∃u ∈ X ,u ≺ x}, where X is the set of
potential designs.
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Adaptive IBEA is one of the first evolutionary algorithms to employ a binary
quality indicator in its selection mechanism. A binary quality indicator is a
function that compares the quality of two Pareto set approximations by mapping
them to a real number [307]. Specifically, a Pareto set approximation is ‘better’
than another one if it is characterised by a higher indicator score. Adaptive
IBEA uses a binary indicator by exploiting it in the fitness assigned to each
member (design) maintained by its search population, X. This fitness quantifies
a design’s contribution to the overall quality of the set of designs maintained by
the optimiser, and is used to decide which designs to replace with newly evolved
solutions as the search progresses. The fitness of a design x is calculated as:

F (x) =
∑

u∈X\{x}
−e−I({u},{x})/cIκ (6.1)

where cI is the maximum absolute indicator value calculated across all members
of X. κ is a term to scale the assigned fitnesses set to 0.05 as in [304]. The
additive epsilon indicator function Iε+(A,B) is used to compute the quality
indicator term I({u}, {x}) [308]. This quality indicator gives the minimum
distance (in objective space) required for one Pareto set approximation A to
dominate another approximation, B. Formally, its calculation is:

Iε+(A,B) = min
ε
{∀b ∈ B ∃a ∈ A : fi(a)− ε ≤ fi(b) for i ∈ {1, . . . , n}}

(6.2)
for a n-objective problem. Adaptive IBEA was implemented in the MATLAB

numerical computing environment and the code is given in Appendix D. It
invoked the finite element model of the sandwich plate presented in Chapter
3, running on the commercial software ANSYS. The sandwich plates were
considered under both cantilevered and free boundary conditions. The first
two mode shapes and natural frequencies of the empty structures were given
in Chapter 5 Table 5.1 for each set of boundary conditions. The objective
values to be minimised were the negative of the modal loss factor (computed
via the modal strain energy method, see equation 2.32 in Chapter 2) and the
percentage of additional mass on the structure. The design parameters were the
location and the orientation of the DSLJ damping inserts, which were encoded
as a 362-element long binary string. A bit pair represents the different damper
orientations (or no damper), with the location in the string of a particular bit pair
determining the location in the sandwich plate it encodes. Overall six different
cases were optimised. The sandwich plate was optimised for modes 1 and 2
under both cantilever and free boundary conditions, i.e. four cases. Two further
cases consisted of optimising over three objectives – the negative of the first two
modal loss factors as well as the additional mass in percent – for the sandwich
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plate under both free and cantilever boundary conditions. The flowchart of the
optimisation process implemented here – including the modifications added to
the original Adaptive IBEA algorithm – is shown in Figures 6.1 and 6.2.
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START

Initialisation

Generate initial population X (random or parametric)

Calculate the fitness value of the members of X

Variation

Is the number of
generations = 1500 ?

NO

YES

END

Evaluate the objective values of the members in X
(ANSYS cost function)

Scale the objective values to the range [0, 1] using bounds
from the search population X

Extract non-dominated solutions (Pareto set) from sample
population

Identify the least fit individual and remove it from X

Update the fitness of the remaining members in X

While X > search
population size

Create an offspring population X’ as a copy of the parent
population X

Apply uniform crossovers to the offsprings with a
probability of 0.9

Flip 1 random bit in 20 random offsprings in X’ (mutation)

Apply a symmetry reflection to the offsprings with a
probability of 0.9

Fitness
evalua-

tion
Merge the parent population X and offspring population X’

and add them to the sample population

Fitness
assignment

Environmental and
mating selection

Perform a binary tournament selection on the fitness value of
the individuals in X

Evaluate the objective values of the offspring population X’
(ANSYS cost function)

Figure 6.1: Flowchart of the Adaptive IBEA algorithm. The main sections are
identified in orange and the ANSYS cost function (green) is detailed in Figure
6.2.
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Convert each chromosome vector from binary to decimal
and write it in a text file

Read damper’s location and orientation from the text file

Preprocessing (geometry modelling and mesh)

Solve (eigenvector and eigenvalues extraction)

Postprocessing: write objective values to text files

Read the objectives values of the offsprings from the text files

ANSYS
Finite Element

Model

Figure 6.2: ANSYS cost function used in the Adaptive IBEA optimiser (see
flowchart 6.1).
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For the 2-objective optimisation, the optimiser search population was ini-
tialised with the m = 20 configurations identified by the parametric optimisation
(see Chapter 5), instead of a random set of designs. As will be shown later, this
contributed to identify optimal designs faster. In the case of the 3-objective opti-
misation, the initial population was created as the union of the non-dominated
solutions yielded from the two 2-objective optimisation runs targeting modes
1 and 2 individually. In this case, the population size was set to m = 100 in
order to obtain a better populated estimated Pareto surface. At each algorithm
iteration, the objective values were scaled to the interval [0, 1] and these scaled
objectives were used to compute the indicator values (see equations 6.1 and
6.2) and the resultant fitness for each member of X.

The ‘environmental selection’ section of Adaptive IBEA then progressively
discarded the least fit members of X in turn (recalculating the fitnesses of all
remaining members of X each time) until the size of the population reached
m. A set of individuals X ′ (a mating pool) was filled by tournament selection
between two randomly chosen individuals from X, with the fitter individual
added to the mating pool X ′. This was repeated until |X| = |X ′|.

In the vary subroutine, designs were evolved using uniform crossover with
a probability of occurrence of 0.9. Uniform crossover consists in creating new
children designs by swapping the binary string representation of two parent
designs, cut at a random point on the binary string. These newly created
children solutions were then subjected to mutation, which involves flipping a
random bit in the chromosome string representation from 0 to 1 or vice-versa.
When crossover was not used, a single parent copy was instead subjected
to this mutation. A symmetry reflection operator was also introduced, which
was applied to 90% of designs after the mutation step. The choice for this
probability was arbitrary but guided by results which showed that a probability of
symmetry reflection of this order yielded faster convergence rates. A probability
of symmetry reflection of 100% would enforce symmetry on all configurations
and thereby prevent any optimal solutions which happened to be asymmetric.
Ergo, it was necessary to allow some offspring members to be created without
enforcing symmetry and only undergoing bit flip mutations, thus allowing the
optimiser to explore asymmetric regions of the search space. Due to the
symmetry of the mode shapes considered (see Figure 5.1), a symmetric damper
distribution with respect to the horizontal or vertical medial axis of the sandwich
plate is likely to be advantageous. The symmetric reflection operator generated
children designs by folding an intermediate design’s left-hand honeycomb cells
through the line of vertical symmetry to assign the right-hand cells (or the
reverse) or alternatively reflecting horizontally the top half to the bottom half (or
vice versa). The cantilevered plates were reflected only horizontally whereas

91



CHAPTER 6. EVOLUTIONARY OPTIMISATION OF DSLJ DAMPING
INSERTS

the free plates were reflected randomly either vertically or horizontally, following
the directions of the axis of symmetry of the mode shape. This combination of
variation mechanism allows an exhaustive exploration of the search space by
testing combinations of already fit patterns (crossover and symmetry reflection),
while promoting diversity in the search population via mutation. The optimiser
was run for 1500 iterations on a modern desktop machine with eight 16 GB
RAM processors running in shared-memory parallel – meaning 30,000 designs
were evaluated in an optimiser run. The 3-objective optimisation was only run
for 50 iterations since its population size was bigger than the 2-objective case.

6.2.2 Optimisation convergence

Evolutionary optimisers are suited to this type of problem but they may be
computationally expensive. Generally, better designs are identified more easily
and quickly at the beginning of the optimisation process. As the number of
generations increases, the convergence rate reduces until it reaches a plateau
value meaning that little further improvement can be achieved. In order to limit
the computational cost and optimisation time, it is necessary to determine the
number of generations after which the benefit of interrupting the optimisation
process exceeds that of finding better solutions. A measure of the convergence
rate may be obtained by computing the hypervolume. In the context of multi-
objective optimisation, the hypervolume was first defined by Ziztler (which he
called the size of the dominated space) as a ‘measure of how much of the
objective space is weakly dominated by a given non-dominated set’ [309]. In
2-objective optimisation, the hypervolume is defined as the area of the objective
space dominated by the Pareto optimal solutions and delimited by an absolute
reference point [310]. The coordinates of this reference point correspond to
the worst possible design, so that any achievable design would dominate the
reference point. The larger the area dominated by the Pareto front, the higher
the hypervolume and the better the solutions identified are. In this case, the
heaviest design (i.e. the sandwich plate with all its cell filled) is characterised by
73.9% additional mass and the worst modal loss factor (i.e. when no dampers
were added) was η = 10−4. The hypervolume may be approximated as the sum
of the areas of the discrete rectangles covering the 2-objective space dominated
by the Pareto set, as illustrated in Figure 6.3. Given two objectives a and b, a
reference point R(ra, rb) and n Pareto optimal designs xi ranked in ascending
order of objective b, the hypervolume is defined as follows,

H =
n−1∑
i=1

[(ra − fa(xi)(fb(xi+1 − fb(xi))] + (ra − fa(xn))(rb − fb(xn)) (6.3)
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where fa(·) and fb(·) are the fitness functions with respect to objectives a and
b, respectively. In this equation, the term under the sum sign represents the
area of the red rectangles shown in Figure 6.3. In an effort to improve the
convergence rate of Adaptive IBEA, two alterations were added to the initial
algorithm, specifically the symmetry reflection operator and the initialisation of
the search population by a sample of the parametrically optimised configurations.
It is necessary to quantify the effect of such alterations on the convergence of
the optimiser by studying the evolution of the hypervolume with the number of
generations. To this end, 20 consecutive optimisation runs were carried out
where the initial search population was either allocated randomly or assigned
as the sample of individuals optimised using the parametric approach described
in Chapter 5. A similar strategy was adopted to assess the benefit of using
symmetry reflections by executing 20 optimisation runs with a probability of
symmetry of 0, 0.3, 0.6 and 0.9, respectively.

Since the hypervolume value is restricted to a range between 0 and a fixed
upper limit towards which it plateaus, its statistical distribution is not normal.
Hence, the median of each group is an appropriate performance indicator
for each cases considered. The initial population runs were tested for 20
generations (or approximately 150 minutes) whereas the symmetry runs were
tested for 40 generations (or around 400 minutes). The reason for allowing
the optimiser to run for longer when studying the effects of symmetry on the
convergence is due to the particular nature of the present problem. In such a
problem, the benefit of initialising the search population is more evident than
that of increasing the probability of symmetry mutation, at least at an early
stage of the optimisation process, see Figures 6.4 and 6.5. At the point where
the value of the hypervolume reaches a plateau there is little scope for further
improvement and it is usual to cease the optimisation process. This point
occurred earlier for the initialisation runs than for the symmetry runs.

6.2.3 Parametric vs Adaptive IBEA optimisation

Since this work is concerned with identifying the lightest and most damped
structures, the damping efficiency was a relevant indicator of the performance
of the different optimisation approaches adopted here. As described in Chapter
4, the damping efficiency of mode i is defined as the modal loss factor of the
mode in question ηi divided by the mass of the structure M :

Efi =
ηi
M

(6.4)

The performance of the various designs identified by the different optimisation
approaches can also be investigated by comparing the frequency response of
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Figure 6.3: Graphical representation of the hypervolume for a 2-objective set
of non-dominated solutions. The absolute reference point was chosen as the
worst design possible with respect to each objective.

the optimised structures. Here, designs optimised either with the parametric
approach or Adaptive IBEA were selected for their similar added mass. Their
amplitude response was computed by mode superposition harmonic analysis
as described in Chapter 2, using 20,000 substeps and a frequency range of
±50 Hz before and after the first and second modal frequency, respectively.

6.3 Results

6.3.1 Optimisation convergence

The initial Adaptive IBEA was modified in an attempt to improve its convergence
rate. The effects of such modifications on the hypervolume value are presented
in this section. It is noteworthy that a higher hypervolume value corresponds to a
more advanced Pareto front and therefore to better solution. The evolution of the
hypervolume as the number of generations increases when considering different
initial search populations and various probabilities of symmetry reflection is
shown in Figures 6.4 and 6.5, respectively. It is clear that initialising the search
population with the individuals identified by the parametric optimisation rather
than with randomly generated designs improves the performance of adaptive
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IBEA significantly. Although an increase in probability of symmetry reflection
seems to enhance the convergence rate of Adaptive IBEA for this type of
problem (see Figure 6.5), the medians of the four groups are overlapping and
an immediate conclusion cannot be drawn. It is therefore necessary to employ
statistical tests in order to determine whether there are significant differences
between each group. Since the hypervolume data is not normally distributed and
no assumptions can be made about the distribution of the sample population,
nonparametric statistical tests must be used. Since the hypervolume values of
four distinct sample groups need to be compared (i.e. groups with a probability
of symmetry of 0, 0.3, 0.6 and 0.9, respectively), and each individual run is
independent from the other runs in a same group, the Kruskal-Wallis test is
used to establish whether at least one group is significantly different from the
other groups. This test, applied with a significance level of 0.05, showed that
at least one group is significantly different from the other groups after the first
generation. In order to test whether one group is notably distinct from another
one, the Mann-Whitney U test is applied with a significance level of 0.05 and
the results are shown in Table 6.1. The generation number after which there is
95% confidence that all the groups are significantly different from each other is
19. This confidence limit is indicated in Figure 6.5 by a purple dashed line.
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Figure 6.4: Hypervolume median of 20 optimisation runs when initialising
the search population with either 20 random individuals or the 20 individuals
identified by the parametric optimisation. The error bars represent the minimum
and maximum hypervolume value of each group.
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Figure 6.5: Hypervolume median of 20 optimisation runs when symmetry
reflections occur with a probability of 0, 0.3, 0.6 and 0.9. The error bars
represent the minimum and maximum hypervolume value of each group.

Groups
Generation number after which the differences
between groups become significant

psym = 0.0 vs psym = 0.3 3

psym = 0.0 vs psym = 0.6 2

psym = 0.0 vs psym = 0.9 9

psym = 0.3 vs psym = 0.6 19

psym = 0.3 vs psym = 0.9 11

psym = 0.6 vs psym = 0.9 12

Table 6.1: Generation number after which the differences between groups
become significant according to the Mann-Whitney U test with a confidence
level of 0.05.

6.3.2 2-objective optimisation

The estimated Pareto sets identified by the 2-objective Adaptive IBEA for the
cantilever and free plate are shown in Figures 6.6 to 6.9. The generation number
in these figures is indicated by colour, with blue being early and red being later.
For all cases the parametric initial population and the non-dominated solutions
are identified with blue and red markers, respectively. The numbers refer to
the configurations identified by a red rectangular box in Figures 5.3 to 5.6
for the parametric initial population and in Figures 6.10 to 6.13 for the non-
dominated solutions. It can be noted that most of the cantilever non-dominated
configurations are symmetrical with respect to the horizontal mid axis of the
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plate (see Figures 6.10 and 6.11), following the symmetry of the mode shape.
Similarly, in the case of the free boundary conditions most of the non-dominant
configurations are symmetrical both vertically and horizontally, see Figures 6.12
and 6.13.

For the cantilever plate under its first flapping mode, the initial population
which was derived from the parametric optimisation and the non-dominated
Adaptive IBEA solutions have similar objective values, as shown in Figure 6.6,
and the two optimised configurations are also similar, see Figures 6.10 and
5.3. In contrast under the first torsional mode (mode 2), the non-dominated
configurations are better than the initial population, see Figure 6.7. Specifically,
the non-dominated solutions achieve up to 27% higher modal loss factors than
the parametrically optimised configuration with a similar additional mass.

In the case of the free plate (see Figures 6.8 and 6.9), the consequences
of mode veering identified in the previous chapter are clear: the parametric
optimisation identified configurations that exhibit much poorer performance than
those determined by Adaptive IBEA. Since the parametric approach optimise
the location and orientation of the DSLJ inserts based on the mode shape
geometry of the empty structure, a swap in the order of the natural frequencies
led the optimiser to target the wrong mode, thus misplacing the dampers. For
instance, the maximum loss factor reached only 2.5×10-3 for a significant 70%
increase in mass in the case of the free sandwich plate originally optimised
for its first mode. These mode swaps – or veering – occurring in the initial
population are illustrated in Figure 6.8 and 6.9 by circle and diamond markers.
In contrast Adaptive IBEA was able to identify much superior configurations
appropriate to the new shape of the first mode, with a modal loss factor of up to
4.2×10-3 for only an 15% increase in mass with respect to the empty structure.
The Adaptive IBEA optimised configurations appear thoroughly different from
the parametrically optimised configurations, see Figure 6.12. A similar situation
can be noted in the case of the free boundary condition plate optimised for
its second mode, where four mode swaps can be identified as dampers are
added to the structure in the parametric optimisation, see the diamond and
circle markers in Figure 6.9. It is not surprising that Adaptive IBEA has identified
significantly better configurations in this case; beating the parametric method
by more than sevenfold in modal loss factor for a similar additional mass, see
Table 6.2.
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Figure 6.6: Cantilever sandwich plate - the initial population, the non-dominated
solutions and all the evaluated configurations are represented by the negative
of their first modal loss factor and their percentage of additional mass.
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Figure 6.7: Cantilever sandwich plate - the initial population, the non-dominated
solutions and all the evaluated configurations are represented by the negative
of their second modal loss factor and their percentage of additional mass.
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Figure 6.8: Free sandwich plate - the initial population, the non-dominated
solutions and all the evaluated configurations are represented by the negative
of their first modal loss factor and their percentage of additional mass. The
initial population features two different mode shapes, represented by either a
circle or a diamond.
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Figure 6.9: Free sandwich plate - the initial population, the non-dominated
solutions and all the evaluated configurations are represented by the negative
of their second modal loss factor and their percentage of additional mass. The
initial population features two different mode shapes, represented by either a
circle or a diamond.
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Figure 6.10: Optimal designs identified by Adaptive IBEA for the cantilever
sandwich plate when targeting the first mode (flapping). The configuration in
the red box is identified by a green point in Figure 6.6.
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Figure 6.11: Optimal designs identified by Adaptive IBEA for the cantilever
sandwich plate when targeting the second mode (torsion). The configuration in
the red box is identified by a green point in Figure 6.7.
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Figure 6.12: Optimal designs identified by Adaptive IBEA for the free sandwich
plate when targeting the first mode (bending). The configuration in the red box
is identified by a green point in Figure 6.8.
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Figure 6.13: Optimal designs identified by Adaptive IBEA for the free sandwich
plate when targeting the second mode (torsion). The configuration in the red
box is identified by a green point in Figure 6.9.
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6.3.3 3-objective optimisation

It is possible to optimise for more than one mode at a time. Here Adaptive IBEA
was used as 3-objective optimiser that maximises simultaneously the first two
modal loss factors while minimising the added mass in a 3-objective optimisation.
When modes are considered individually for the cantilever or free plates, the
3-objective optimised solutions perform less well (i.e. they are heavier and less
damped) than the 2-objective optimised solutions, see Figures 6.14 and 6.15.
However, the 2-objective solutions that were determined by maximising the
first modal loss factor exhibit very poor ability at damping the second mode,
and vice versa. The 3-objective solution has identified compromise solutions
that are capable of damping efficiently and simultaneously modes 1 and 2. For
clarity and because the search population was initialised to 100, only 20 of the
non-dominated configurations are represented for the 3-objective optimisation.
The distributions of DSLJ inserts in the 3-objective optimised configurations
appear to be combinations of the 2-objective configurations where the modal
loss factors are maximised individually, see Figures 6.16 and 6.17.
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Figure 6.14: The non-dominated solutions identified by the 3-objective (red
points) and 2-objective optimisations targeting the first mode (yellow crosses)
or second mode (blue crosses) are shown for the cantilever sandwich plate.
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Figure 6.15: The non-dominated solutions identified by the 3-objective (red
points) and 2-objective optimisations targeting the first mode (yellow crosses) or
second mode (blue crosses) are shown for the sandwich plate in free boundary
conditions.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Figure 6.16: Optimal designs identified by Adaptive IBEA for the cantilever
sandwich plate when targeting the first and second mode simultaneously. The
configuration in the red box is identified by a green point in Figure 6.14.
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Figure 6.17: Optimal designs identified by Adaptive IBEA for the free sand-
wich plate when targeting the first and second mode simultaneously. The
configuration in the red box is identified by a green point in Figure 6.15.
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6.3.4 Parametric vs Adaptive IBEA optimisation

For comparison purposes, a configuration characterised by an increase in mass
of about 20% is picked among the Pareto-optimal solutions in all the cases
considered here. This configuration is identified by a green point in the Pareto
graphs and by a red box in the configuration figures. The modal loss factor,
mass and damping efficiencies of these configurations are shown in Table
6.2. The modal loss factors and added mass are normalised to those of the
empty structure. As would be expected, all optimised configurations exhibit
higher modal loss factors than the empty structure; reaching up to 43 times
for the first modal loss factor in the Adaptive IBEA optimised cantilever case.
These increases in loss factors come at the cost of moderate increases in mass,
for example 21% additional mass for the Adaptive IBEA optimised cantilever
case in mode 1. In the cantilever sandwich case optimised for mode 1, the
damping efficiency is similar for both the parametric and Adaptive IBEA solution.
However for all other cases, Adaptive IBEA outstrips the parametric approach,
in particular for the free boundary condition cases where the damping efficiency
after the Adaptive IBEA optimisation is about five and seven times higher than
that of the parametric optimisation for mode 1 and 2, respectively.

The amplitude response of each of the selected designs is shown in Figures
6.18 and 6.19 for the cantilever and free plate, respectively. It is clear that
both optimisation methods have identified better solutions for the mode they
were targeting, which confirms the data shown in Table 6.2. In the case of the
cantilever plate (Figure 6.18), Adaptive IBEA identified designs that produced a
smaller amplitude response than those determined parametrically. The Adaptive
IBEA design targeting mode 2 does not perform well for mode 1. However, the
3-objective optimisation has identified a compromise configuration which damps
both modes 1 and 2 substantially. Similar conclusions can be drawn for the free
plate even though the graph is more difficult to interpret due to the modes being
close in frequency, see Figure 6.19. Most damped configurations tend to shift
the natural frequency either upwards or downwards, which is expected since
the ratio of the modal stiffness to the modal mass is altered after the addition of
the dampers.
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Optimisation approach Boundary
conditions

η1 η2 Mass Damping
efficiency

Parametric Cantilever 42.0 - 1.20 34.9
- 12.5 1.29 9.74

Free 8.55 - 1.16 7.35
- 4.16 1.12 3.71

Adaptive IBEA Cantilever 43.0 - 1.21 35.6
- 15.6 1.27 12.3
27.9 11.4 1.21 -

Free 41.6 - 1.14 36.4
- 32.2 1.13 28.6
13.4 29.4 1.16 -

Table 6.2: Performance comparison between the parametric and Adaptive
IBEA optimisation for the cantilever and free boundary condition cases. The
configurations compared are identified by a magenta and a green point in
Figures 6.6 to 6.15 for the parametric and the Adaptive IBEA optimisation,
respectively. The mass, the first η1 and second η2 loss factors are presented as
a ratio of the empty structure value. The damping efficiencies are also indicated.
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Figure 6.18: Amplitude of the frequency response function of the selected
configurations optimised for the cantilever plate with the parametric approach,
Adaptive IBEA when targeting mode 1, mode 2 and mode 1 and 2 simultane-
ously. The amplitude response of the undamped plate is also shown.
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Figure 6.19: Amplitude of the frequency response function of the selected con-
figurations optimised for the free plate with the parametric approach, Adaptive
IBEA when targeting mode 1, mode 2 and mode 1 and 2 simultaneously. The
amplitude response of the undamped plate is also shown.
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6.4 Discussion

6.4.1 Optimisation convergence

The 20 consecutive and independent optimisation runs produced similar hyper-
volume values, noticeable by the relatively small errors bars in Figures 6.4 and
6.5. This demonstrates that Adaptive IBEA is a robust optimisation process for
this type of problem, capable of producing repeatable results. In all cases, the
hypervolume increased as the optimisation progressed which was expected
since the objective space increases as the optimiser identifies better solutions.
This suggests that Adaptive IBEA is a functional multi-objective evolutionary
optimiser and it was correctly implemented in this study.

In Figure 6.4, it was shown that initialising the search population with the
designs identified by the parametric approach yields an appreciably higher
hypervolume than when the initial population is assigned randomly. A high prob-
ability of symmetry reflection also improves the performance of the optimiser,
though to a lesser extent. Indeed, it may be necessary to wait up to the 19th gen-
eration to discern significant differences when considering different probabilities
of symmetry (see Table 6.1). It could have been interesting to explore the effect
of other alterations to Adaptive IBEA, such as the influence of the probability
of mutation, the probability of crossover or the type of crossover (uniform or
single point). However, these types of alteration are not specific to this particular
optimisation problem. The investigation of their effects on the convergence rate
relates more to the field of computer science which falls out of the scope of this
study. Further modifications to Adaptive IBEA specific to this problem could also
have been implemented in order to improve the convergence rate. For instance,
this problem can be scaled down by optimising widely disparate regions of the
sandwich plate in parallel, and subsequently exploring smaller child regions
within a broadly optimised parent region. The optimisation of regions can be
run on multiple cores in parallel which would also accelerate the convergence.

6.4.2 Adaptive IBEA optimisation

In this study, a multi-objective evolutionary optimiser was successfully imple-
mented with the objective to optimise the location and orientation of DSLJ
dampers deployed in a honeycomb-core sandwich plate under cantilever and
free boundary conditions. Both the parametric and Adaptive IBEA optimised
configurations showed better performance than the empty native structure, both
in terms of absolute modal loss factors and damping efficiency, see Table 6.2,
Figure 6.18 and 6.19. Therefore, these two approaches are both relevant for
this type of problem.
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In the cantilever sandwich plate in its first mode, Adaptive IBEA and the
parametric optimisation converged towards similar optimal solutions. Indeed,
the Pareto-optimal solutions share the same location on the search space for
both optimisation techniques, see Figure 6.6. The configurations identified by
the two techniques also feature a similar distribution of DSLJ dampers, see
Figures 6.10 and 5.3. The fact that both optimisation approaches have identified
similar sets of solutions, suggests that they may be optimal for this particular
case, i.e. there is no other better solution. In general, a heuristic optimiser such
as adaptive IBEA cannot explain why the solutions identified are optimal nor it
can guarantee that the optimised solutions are the best for a particular problem.

Nevertheless, there were differences in all other cases, sometimes only
subtle and sometimes more marked. The differences in performance of these
configurations however can be very large, e.g. the Adaptive IBEA configuration
for the free plate which had a second modal loss factor up to an order of
magnitude greater for a similar additional mass, see Figure 6.9. Thus, the
parametric optimisation is less effective than the Adaptive IBEA optimisation in
some if not all cases.

The reason for this is that the parametric optimisation cannot cope with mode
veering caused by the additional mass and stiffness occurring as dampers
are inserted, whereas the evolutionary optimisation implicitly does. Indeed,
Adaptive IBEA is systematically attempting to maximise the modal loss factor of
the first or second mode extracted by the finite element eigensolver, whether
it be a torsional or a bending mode. Since the design variables (i.e. the
distribution of the DSLJ dampers here) affects directly the quality measures
used to store and select designs, the problem of mode veering is circumscribed
by evolutionary optimisers such as Adaptive IBEA. Hence structures prone
to veering may benefit more from evolutionary optimisers which take veering
into account, than from approaches such as this parametric method which do
not. The detrimental consequences of mode veering can also be seen in the
poor damping efficiency predicted for the free plate optimised parametrically for
mode 2, see Table 6.2. When mode veering occurred, the parametric method
identified designs with a damping efficiency of up to an order of magnitude
lower than those identified by Adaptive IBEA. It is well known that adding
damping treatments onto a lightweight structure may shift its natural frequencies
upwards or downwards [265]. These frequency shifts may also be minimised
–thus mitigating the consequences of veering– by regarding them as a penalty
parameter in the evolutionary optimisation algorithms [195,196,208].

Unlike the parametric approach, Adaptive IBEA is capable of minimising
more than two objectives simultaneously. Here, the 3-objective configurations
presented an evident trade-off between the two 2-objective solutions, see Fig-
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ures 6.14 and 6.15. Indeed the 2-objective solutions exhibited poor performance
in damping for the mode that was not targeted. In contrast, the 3-objective
compromise solutions retained substantial damping for both mode 1 and 2, with
a relative penalty compared to the 2-objective optimisation, see Figures 6.18
and 6.19. This may be particularly useful for structures subjected to excita-
tions covering a wide range of frequencies, such as the compressor blades
of a gas turbine subjected to an unsteady airflow [311]. It can be noted that
the 3-objective designs share the location and orientation features of the two
2-objective designs targeting individual modes, see Figures 6.16 and 6.17.

Adaptive IBEA is an effective –though computationally expensive and time
consuming– approach to this problem. It necessitated running at least 40 gener-
ations (or 800 finite element simulations, corresponding to around 400 minutes,
see Figure 6.5) to converge whereas the parametric method only required
one initial finite element evaluation. However, using such heuristic methods
guarantees equivalent –and in most cases substantially better– optimisation
performance. This is especially true when the quality measures used to select
the designs may be affected by the alteration of the design itself during the
optimisation process, as it was the case here with mode veering.

6.5 Conclusion

Optimal weight-efficient configurations of DSLJ damper for honeycomb-cored
sandwich plates with various boundary conditions were identified here using a
multi-objective evolutionary optimisation algorithm. For example, the free sand-
wich plate was only made 13% heavier and produced a 32 times higher second
modal loss factor than the empty structure after the Adaptive IBEA optimisation.
It was shown that this optimisation technique is as, if not more, effective than the
parametric approach for all the cases considered here. Although computation-
ally demanding and complex to implement, evolutionary optimisation techniques
are capable of dealing with the coupling between quality measures and the
updating of the designs in the search population. In the present problem, the
placement of damping inserts had a direct influence on the mode shapes and
the order of extraction of the natural frequencies, which in turn determined the
value of the modal loss factor to be minimised. Adaptive IBEA is thus a more
sophisticated and a cleverer optimisation method than the parametric approach
since it can account for any potential mode veering by dynamically updating
its quality measures instead of targeting a pre-determined mode shape. Two
alterations to the initial Adaptive IBEA algorithm were also implemented, i.e. the
initialisation of the search population with parametrically optimised configura-
tions and the use of symmetry reflection. It was shown that such modifications
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substantially improved the convergence rate of the optimisation process. Finally,
Adaptive IBEA is a multi-objective optimisation algorithm capable of minimising
the modal loss factors of a large number of modes simultaneously, which can
be an interesting property for structures subjected to a wide range of excitation
frequencies.
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Chapter 7

Experimental modal testing of
optimally damped honeycomb
sandwich panels

7.1 Introduction

The main purpose of the work described in this thesis was to investigate the
performance of a novel and weight-efficient damping treatment for lightweight
sandwich structures. Using numerical methods, it was shown in the previous
chapters that the DSLJ insert is a highly efficient damping treatment when
deployed in honeycomb sandwich structures and it can yield similar or even
superior performance to the CLD. The location and orientation of these DSLJ
inserts were then optimised for standard sandwich panels and a high increase in
modal loss factor was reported for a minimal increase in added mass. However,
the numerical model used to evaluate the eigenfrequencies and eigenvectors
of the structures does not account for the various imperfections introduced by
the manufacture of physical samples, especially for complex structures such as
honeycomb-cored sandwich panels and DSLJ inserts. It is important to note
that the numerical model described in the previous chapters was not intended
to provide an accurate description of the behaviour of experimental samples,
but only to compare damping in structures with different damping treatments.
However, it is necessary to appraise the fidelity of the numerical model at
capturing the differences in damping between two structures. In this chapter,
honeycomb-cored sandwich structures under various damping configurations
are manufactured and tested experimentally. Although absolute values of modal
loss factors are not expected to match the numerical predictions, attention is
focused on the evolution of modal loss factor between undamped and damped
samples.
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7.2 Method

The structures considered here are honeycomb-cored sandwich plates under
free boundary conditions. The modal testing of these structures is carried out
in order to evaluate their Frequency Response Function (FRF), from which the
modal loss factors and natural frequencies can be extracted. Three different
damping configurations will be applied to this plate: (i) a CLD patch positioned
so as to damp the first mode of the sandwich plate considered under free
boundary conditions (ii) the DSLJ configuration that targets the first mode of the
free sandwich plate, as determined in Chapter 6 (iii) an undamped honeycomb
sandwich plate.

7.2.1 Manufacturing of the samples

A total of six samples were manufactured, including two identical pairs of
sandwich plates with a CLD, DSLJ inserts and no dampers. These structures
will subsequently be referred to as CLD, DSLJ and undamped, respectively.
The design of these sandwich structures matched as closely as possible the
finite element model described in Chapter 3. The honeycomb plates were
made of 10×10 regular hexagonal cells, plus 9×9 interleaving cells. The
honeycomb core, supplied by Goodfellow, was 20 mm thick and had a density
of 0.062 g.cm-3. It was formed by expansion from stacked aluminium foil (alloy
5052). The cell walls were 0.1 mm thick and the cell rib was 7.5 mm long.
The skins consisted of a rectangular aluminium sheet cut to dimension with
a guillotine. The hard tempered aluminium sheets (AL1013) manufactured by
Advent Research Materials were made of 0.2 mm thick 99.5% pure aluminium.
The skins were bonded to the core using the high performance epoxy laminating
resin EL2 cured with the epoxy hardener AT30 - FAST (supplied by Easy
Composites). The external surface of the skins was protected with a sticky tape
to avoid its contamination with cured epoxy, which would impede the modal
testing. The inner surface of the skins was cleaned with acetone and keyed
with an abrasive sand paper in order to enhance its bonding to the core. The
epoxy was applied with a brush and left to cure overnight. Once the first skin
was bonded, the same process was repeated for the second skin in order to
prevent the leakage of liquid epoxy inside the honeycomb core. The undamped
samples are shown in Figure 7.1.

The CLD dampers were supplied by Heathcote Industrial Plastics Ltd. (prod-
uct 2002) and were made of a 0.5 mm thick constraining layer and a 0.05 mm
thick viscoelastic layer. The viscoelastic layer consisted of the HIP2 damping
polymer whose material loss factor and shear modulus at 20 ◦C and 1,000 Hz
are approximately 1.2 and 2.5 GPa, respectively. The CLD patch of dimensions
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(a) (b)

Figure 7.1: Undamped samples without upper skin shown in top (a) and isomet-
ric views (b).

125×117 mm covered about half of the surface of the plate and was bonded in
the middle. This design maximises the shear strain in the CLD’s viscoelastic
layer for the geometry and boundary condition considered, as suggested by
Chia et al. [13]. The CLD samples are shown in Figure 7.2.

(a) (b)

Figure 7.2: Honeycomb sandwich panel with a CLD damper (a). A close-up
view of the bonding of the CLD onto the sandwich skin is shown in (b).

The DSLJ inserts were manufactured in-house by folding two 0.2mm-thick
aluminium sheets into a double shear lap-joint construct, as shown in Figure
7.3. Such construct was then filled with the Dow Corning viscoelastic polymer 3-
6512, which cures into a translucent gel. This 2-part silicone gel was degassed
under vacuum and cured at 70 ◦C for two hours. The material loss factor of
this polymer measured by dynamic mechanical analysis at 25 ◦C and 1,000
Hz is approximately 0.03. The DSLJ inserts were cut to a length of 18 mm
so that contact with the skins would be prohibited once inserted in the 20mm-
thick honeycomb core. These inserts were made as thin as the manufacturing
constraints allow (i.e. approximately 3.5 mm thick) in order to obtain a high shear
strain in the viscoelastic material. The inserts were designed to fit between two
opposite vertices of a hexagonal cell, see Figure 7.4(c). The inserts were then
permanently bonded to the cell vertices with cyanoacrylate glue, facilitating
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the transfer of rotation from the deformed cell rib to the DSLJ’s rigid elements.
The DSLJ dampers were positioned and oriented following the configuration
determined in Chapter 6, which was optimised to damp the first mode of the
sandwich plate under free boundary conditions, see Figure 7.4(a). The different
samples manufactured are shown in Figure 7.5. The dimensions of the samples
are relatively similar and can be found in Table 7.1.

Figure 7.3: Sketch of a DSLJ damping insert for hexagonal honeycomb cells.

Structure Length (mm) Width (mm) Depth (mm)

Sample a 238 131 20.3
Sample b 238 131 20.4
Sample c 237 130 20.4
Sample d 240 130 20.4
Sample e 237 131 20.5
Sample f 237 130 20.3
FE model 220 127 20.0

Table 7.1: Dimensions of the samples shown in Figure 7.5. The dimensions of
the finite element model is also indicated.

7.2.2 Experimental setup

The FRF of the samples were measured by Single-Input Single-Output (SISO)
modal testing, following the setup shown in Figures 7.6 and 7.7. The samples
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(a) Optimised DSLJ configuration.

(b)

(c) (d)

Figure 7.4: A sketch of an optimised DSLJ configuration (a) and photographs of
manufactured samples (b-d) including detail of DSLJ in place (c).

were hung vertically with elastic cords to simulate free boundary conditions and
isolate them from external excitations. The elastic cords were attached to a
retort stand and wrapped around the samples at a distance of 4 cm from the top
and bottom edges. The samples were excited with the modal electrodynamic
exciter K2004E01 (The Modal Shop, Inc), which has a very light armature mass,
making it ideal for exciting lightweight structures. A flexible nylon stinger was
connected to the shaker and the low impedance load cell 9712B50 (Kistler) was
mounted at the other end. This integrated electronic piezoelectric load cell was
chosen for its high sensitivity and low mass. A mounting stud was screwed onto
the load cell and stuck to the samples with cyanoacrylate glue (see Figure 7.8
(a)). The mounting stud was cleaned with acetone between each measurement
in order to remove the cured adhesive and mitigate its damping effect. The out-
of-plane acceleration was measured with the lightweight integrated electronic
piezoelectric accelerometer 8640A50 from Kistler which was stuck onto the
surface of the structure using beeswax (see Figure 7.8 (b)). Its frequency range
(25 kHz) was high enough to measure the first 10 natural frequencies of the
samples. The dynamic signal analyser SignalCalc ACE Quattro (Data Physics)
generated a random signal to the modal exciter and it was also used as a data
acquisition system and spectrum analyser for the signals generated by the load
cell and accelerometer.
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(a) Sample a (CLD). (b) Sample b (CLD). (c) Sample c (DSLJ 1).

(d) Sample d (DSLJ 1). (e) Sample e (Undamped). (f) Sample f (Undamped).

Figure 7.5: All of six of the sandwich panel samples used in testing.

It is assumed here that the first mode shape was the same as that predicted
by the finite element analysis for the undamped sandwich plate under free
boundary conditions, i.e. a torsional mode (see Figure 7.9). Therefore, the
forcing input and acceleration output were respectively applied and measured at
two opposite corners on the plate in order to capture the frequency response of
the first mode. A random waveform signal of 100 mV Root Mean Square (RMS)
was used to excite the structure under a frequency range of 0 to 4,000 Hz,
which encompasses the first eigenfrequency. The analogue output signals of
the accelerometer and load cell were respectively converted to an acceleration
x(t) and a force f(t) using the sensitivity values provided by the manufacturer.
Given that the mass of the shaker’s moving armature, the load cell, the stinger
and the mounting stud is 54 g, a RMS voltage of 100 mV applied to the modal
exciter’s amplifier generates a force of about 13 N peak-peak for a random
excitation with a maximum frequency of 4,000 Hz. In the case of random
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Figure 7.6: Sketch of the modal testing setup. The sample is excited with a
random waveform excitation and the FRF is computed from the input force and
output acceleration signals.

excitation, the autocorrelation and cross correlation functions give a measure of
the similarity between two signals in the time domain. They can be calculated
as follows,

Rff (τ) = lim
T→+∞

1

T

∫ T/2

−T/2
f(t)f(t+ τ) dτ

Rxf (τ) = lim
T→+∞

1

T

∫ T/2

−T/2
x(t)f(t+ τ) dτ

(7.1)

The power spectral densities and cross spectral densities are the Fourier trans-
forms of the autocorrelation and cross correlation functions, respectively:

Sff (ω) =
1

2π

∫ +∞

−∞
Rff (τ)e−iωτ dτ

Sxf (ω) =
1

2π

∫ +∞

−∞
Rxf (τ)e−iωτ dτ

(7.2)
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Signal generator
+

spectrum analyser

Power amplifier
+

modal exciter

Test sample

Load cell

Stinger

Accelerometer

Elastic cords

Figure 7.7: Modal testing setup of a honeycomb sandwich panel.

(a) Load cell. (b) Accelerometer.

Figure 7.8: Sample free supports using elastic cords and transducers attach-
ments. The load cell is connected to the exciter via a nylon stinger and attached
to the sample with a mounting stud (a). The accelerometer is stuck onto the
sandwich skin with beeswax (b).

Two accelerances (FRF computed from an acceleration input) can be estimated
from the power and cross spectral densities as follows,

A1(ω) =
Sfx(ω)

Sff (ω)

A2(ω) =
Sxx(ω)

Sxf (ω)

(7.3)

These FRFs are two estimates of the same quantity. It is possible to define a
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Figure 7.9: First mode shape (at 1346 Hz) of the undamped sandwich plate with
honeycomb core under free boundary conditions predicted by the finite element
model. The colours indicate the displacement, with blue being the lowest and
red the highest.

coherence function as the ratio of these FRFs:

Γ2 =
A1(ω)

A2(ω)
(7.4)

The coherence function gives a measure of the noise present in the signals and
should ideally be equal to unity. The receptance (ratio of the output displace-
ment to the input force signals in the frequency domain) can be calculated by
integrating the accelerance twice in the frequency domain:

H(ω) =
A(ω)

−ω2
(7.5)

The modulus and argument of the complex receptance correspond to the
amplitude response and phase angle of the FRF. The amplitude response,
phase angle and coherence function were calculated in the frequency domain
with 25,600 data points. In order to reduce the noise and obtain a better quality
data, 30 stable measurements were taken successively and averaged. An
overlap of 50% was applied between each frame. A Hanning window was
imposed on the time signal prior to applying the Fourier transform in order to
minimise the effect of leakage, as advised by Ewins [24] for continuous random
excitation. The free run trigger was used to acquire data continuously. The
first modal loss factor was computed from the first peak using the half-power
bandwidth method, as described in Chapter 2 Equation 2.36. The damping
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efficiencies Ef1 was computed as follows,

Ef1 =
η2

1

m
(7.6)

where η1 and m are the first modal loss factor and the mass of the sample,
respectively.

7.2.3 Finite element model

The finite element model of the honeycomb sandwich plate damped with CLDs
or DSLJ dampers was described in Chapter 3. The model parameters were
adapted here to match the material properties and dimensions of the samples
manufactured. Specifically,

• The thickness of the plate was increased from 10 mm to 20 mm.

• The honeycomb wall thickness was changed from 0.2 mm to 0.1 mm.

• The cell ribs length was reduced from 10 mm to 7.5 mm.

• The CLD viscoelastic layer and constrained layer thicknesses were set to
0.05 mm and 0.5 mm, respectively.

• The DSLJ insert thickness was increased from 0.25 mm to 3.5 mm, which
was the thinnest design possible given the manufacturing constraints.

• The input force was set to 13 N.

7.3 Results

The receptances of the damped and undamped samples are compared in this
section. A typical receptance measurement comprising the amplitude, phase
angle and coherence function is illustrated in Figure 7.10. A mode can be
identified by a peak in amplitude or a change in phase angle from 0 to -180°.
The coherence function is close to unity across the frequency range of interest,
showing that a reliable estimate of the receptance has been measured.
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Figure 7.10: Amplitude, phase and coherence function of a modal test.

7.3.1 Repeatability of the tests

Inaccuracies in measurement can arise from two sources, either from the testing
itself or from the manufacture of the samples. For instance, inaccuracies in
testing can arise if the transducers are positioned at a slightly different location
between two measures. A faulty manufacturing procedure can also alter the
intrinsic mass, stiffness and damping of the structure upon which its dynamic
properties heavily depend. In order to quantify the inaccuracies caused by
the testing, 20 consecutive FRF measures of the same sample were taken
and the transducers were detached then reconnected to the structure at the
same location between the measures. The resulting FRF values were then
averaged and the standard deviation was calculated, see Figure 7.11. The
similar amplitude responses obtained after the 20 tests suggests that the testing
procedure is reliable and repeatable.
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Figure 7.11: Average and standard deviation of the amplitude response obtained
after 20 successive modal tests.
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7.3.2 Repeatability of the samples

In an effort to quantify the structural imperfection of the samples, two identical
samples – one pair for each damping treatment (DSLJ, CLD and undamped) –
were manufactured and tested. As the samples are symmetrical with respect to
the median plane, the FRFs were measured by sticking the transducers on both
faces of each sample, which allowed two measures to be obtained for a single
structure. The samples tested on the rear face are denoted with an apostrophe.
The amplitude response is shown in Figures 7.12 to 7.14. Although there is
some variability in amplitude response between each manufactured sample, it
is possible to identify clearly the peak corresponding to the first mode at around
1700 Hz.
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Figure 7.12: Amplitude response of the four undamped samples.
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Figure 7.13: Amplitude response of the four CLD samples.
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Figure 7.14: Amplitude response of the four DSLJ samples.

7.3.3 Amplitude response comparison

The amplitude response of all the samples focused around the first natural
frequency is shown in Figure 7.15(a). As expected, the peak amplitude of
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the undamped samples is higher than that of the damped samples. A similar
behaviour can be noticed from the finite element predictions, although the
difference between damped and undamped are much more marked. The finite
element model also overestimates the amplitude response and underestimates
the natural frequency.
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Figure 7.15: Amplitude response of the samples with CLD (blue), DSLJ (red)
and undamped (black) treatments measured experimentally (a) and predicted
numerically by finite element analysis (b).

7.3.4 Damping efficiency comparison

The mass, natural frequencies, modal loss factors and damping efficiencies of
all the samples are given in Table 7.2. For ease of interpretation, their average
values – along with the numerical predictions from the finite element model
– are given in Table 7.3. These average values are normalised to that of the
undamped structures and shown in Table 7.4. The modal loss factor increases
substantially with the addition of either the CLD or the DSLJ inserts, see Table
7.4. It is higher for the samples damped with the DSLJ dampers, reaching
a 111% increase from the undamped samples on average. Similar trends
were predicted by the finite element model, although the absolute modal loss
factor values were much higher than those measured experimentally. Both the
CLD and DSLJ dampers show appreciable performance in terms of damping
efficiency, both experimentally and numerically. Both damping solutions add
approximately 27% mass to the structure, the CLD being slightly heavier than
the DSLJ damping treatment. The CLD tends to shift the natural frequency
upwards – the stiffening effect of the damper having more influence on the mode
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frequency than the increase in mass. On the contrary, the DSLJ treatment tends
to lower the natural frequency.

sample damping mass (g) f1 (Hz) η1 (×10−3) Ef1 (g-1)

a CLD 105.8 1852.0 33.1 10.3
a’ CLD 105.8 1890.9 39.6 14.8
b CLD 107.8 1801.0 36.8 12.5
b’ CLD 107.8 1871.3 42.8 17.0
c DSLJ 106.3 1511.6 43.4 17.7
c’ DSLJ 106.3 1529.2 49.0 22.6
d DSLJ 104.9 1586.2 49.5 23.4
d’ DSLJ 104.9 1570.5 58.2 32.3
e undamped 83.6 1629.5 31.3 11.7
e’ undamped 83.6 1657.8 25.3 7.7
f undamped 83.4 1677.9 16.6 3.3
f’ undamped 83.4 1687.1 21.4 5.5

Table 7.2: Mass, natural frequencies, modal loss factors and damping efficien-
cies of the samples.

method damping mass (g) f1 (Hz) η1 (×10−3) Ef1 (g-1)

experiment undamped 83.5 1663.1 23.7 7.05
experiment CLD 106.8 1853.8 38.1 13.7
experiment DSLJ 105.6 1549.4 50.1 24.0

Finite element undamped 58.1 1346.4 1.19 0.02
Finite element CLD 73.5 1508.0 18.6 4.69
Finite element DSLJ 66.1 1340.0 19.7 5.87

Table 7.3: The mass, natural frequencies, modal loss factors and damping effi-
ciencies of the samples measured experimentally and averaged are compared
to the values predicted by finite element analysis.
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method damping mass f1 η1 Eff1

experiment undamped 1.00 1.00 1.00 1.00
experiment CLD 1.28 1.11 1.61 1.94
experiment DSLJ 1.26 0.93 2.11 3.40

Finite element undamped 1.00 1.00 1.00 1.00
Finite element CLD 1.27 1.12 15.6 234
Finite element DSLJ 1.14 0.99 16.5 293

Table 7.4: The average values of the mass, natural frequencies, modal loss
factors and damping efficiencies of the samples are shown normalised to that
of the undamped configuration.

7.4 Discussion

In this chapter, it is shown experimentally that the CLD and DSLJ dampers
are both weight-efficient damping solutions for the particular honeycomb-cored
sandwich plate considered. Indeed, the damping efficiency measured in the
damped structures is marginally higher than that of the undamped structures,
see Table 7.4. This confirms the predictions computed from the numerical finite
element model. However, discrepancy in damping between the damped and un-
damped structures is higher in the finite element model than in the experiments,
see Figure 7.15. This is likely due to manufacturing imperfections in the physical
samples that were not accounted for in the finite element model. These manu-
facturing imperfections introduce additional structural damping, notably in the
undamped samples. In particular, structural damping may arise at unadhered
metal-metal contacts between the sandwich skins and the core and between the
corrugated strips forming the honeycomb cell [8]. The relative displacements in
the various joints of the samples dissipate vibrational energy by friction whereas
the finite element model assumed perfect bonding in the structure. Additional
energy dissipation may also be introduced from the inherent material damping
in the epoxy adhesive used to bond the skin to the core.

The finite element model also underestimates the natural frequency, see
Table 7.3. The reason for this is that the sample’s modal mass and modal
stiffness are influenced by physical details that were ignored in the numerical
model. For instance, the honeycomb core was made by expansion process
from stacked aluminium sheets, resulting in doubling the thickness of 1 out of 6
walls of each hexagonal cell, thus stiffening the structure. The epoxy layer also
accounts for extra mass (15.3 g) and stiffness in each manufactured samples.
However, similar trends in the evolution of the natural frequency can be noticed
between the experimental measurements and the numerical predictions, i.e. the
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DSLJ dampers tend to shift the first modal frequency downwards whereas the
CLD pushes it upwards, see Table 7.4. This may be problematical for systems
subjected to external excitations at a specific forcing frequency, for example
in transport. If a damping treatment alters the modal frequency of a structure
such that it coincides with the forcing frequency, the system may enter into
resonance, which may cause severe structural damage.

It should be pointed out that the finite element model used in this thesis
was not aimed at describing the frequency response of the systems considered
here with accuracy, nor to provide a precise and absolute estimate of the
modal loss factors, but only to compare damping values between two structures
in different damping configurations. Therefore, it was not deemed worthwhile
adding complexity to the model, for instance by modelling the structural damping
arising from manufacturing defects.

Experimental errors can arise either from the testing procedure or from
the manufacture of the samples and both of these sources of errors were
quantified here by carrying out repeatability tests. As can be seen in Figure
7.11, 20 consecutive tests yielded a very similar amplitude response, showing
that the bonding of the accelerometer and the force transducer onto the sample
can be repeated accurately. The testing accuracy may have been improved
further by using non-contact measurement techniques. This would have avoided
mass loading caused by the bonding of the load cell and accelerometer to the
samples, thus preventing the structure’s intrinsic dynamic properties from being
altered. An example of non-contact measurement techniques consists in using
a laser Doppler vibrometer to measure the velocity at the surface of the vibrating
structure, replacing the role of the accelerometer [312]. The modal exciter may
also be replaced by an impact hammer or even a non-contact magnetic exciter
such as an Eddy current actuator in order to mitigate the effect of the mass
added by the load cell and the shaker’s armature. Finally, a Hanning window
was applied to the transducer’s signal to attenuate the influence of leakage.
It should be noted that, although sometimes necessary, the use of windows
distorts the amplitude measured and tends to attenuate the peak amplitude,
thereby giving an impression of higher damping than is actually present in the
structure [24].

The greatest variabilities in the measurements are mainly due to the variation
introduced by the manufacturing process. Indeed, two supposedly identical
samples presented a moderately different amplitude response, see Figure 7.12
to 7.14. For future experiments, the author recommends automatising the
manufacturing process – in particular that of the DSLJ inserts – in order to
minimise such variations. For example, the structure could have been made
by additive layer manufacturing, which would have greatly improved the design
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and therefore the reliability of the tests. This would also have eliminated the
relative displacements between the various assembled parts of the samples,
thereby diminishing the additional structural damping introduced artificially in the
structures. Besides, measuring the vibration response of small and lightweight
samples is delicate, thus designing larger samples would allow greater out-of-
plane displacements, which would improve the quality of the measurements.
Finally, it is also possible that the DSLJ inserts introduced nonlinearities in the
structure, noticeable from the noisier signal in the DSLJ sample’s FRF. The
nonlinear vibration response of the DSLJ dampers could be an interesting
phenomenon to research further.

7.5 Conclusion

In this chapter the modal testing of honeycomb-cored sandwich plates with
CLD, DSLJ inserts or no damper was carried out. It was established that the
DSLJ damper is capable of providing high passive damping to a structure for a
minimal increase in mass. The DSLJ dampers were shown to be a competitive
passive damping solution to the CLD in terms of damping per unit mass. This
confirms the global trends predicted by the numerical finite element model.

The present finite element model was not intended to describe the dynam-
ical properties of experimental samples with accuracy, but rather to compare
damping performance between damped and undamped structures. Here, the
numerical model and the modal tests showed a satisfactory correlation in the
evolution of the modal loss factor and the natural frequency between the different
damping configurations considered.
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Chapter 8

Conclusion

8.1 General discussion

The work undertaken in this thesis investigated the performance of a novel
passive damping treatment, namely the Double Shear Lap-Joint damper (DSLJ),
when deployed in structures such as lightweight honeycomb-cored sandwich
panels. Attention was focused on methods for identification of configurations
which produce the highest achievable damping for the least addition of mass
into the structure.

The advantage of the DSLJ damper lies in its high weight efficiency, utilising
a minimal amount of material while producing significant passive damping,
see Chapter 4 Table 4.3. This advantage arises from the innovative damping
mechanism introduced by its double lap-joint design which is used to amplify
the shear strain in a lossy polymer. Similarly to traditional dampers such as the
Constrained Layer Damper (CLD), the DSLJ damper converts deformation in
the host structure into relative displacement of the stiff elements of the damper,
which in turn generates shear strain in a damping polymer connecting those
stiff elements. Vibrational motion of the host structure is used to drive relative
rotation of the stiff elements, as opposed to relative translations as is the case
for CLDs, see Figures 3.10 and 3.8.

Another benefit of the DSLJ over traditional damping device such as the CLD
is that it may be inserted inside internal holes of the host structure, resulting in
being more space efficient than external dampers. Deploying dampers exter-
nally may also not always be possible, for instance in parts that require accurate
control of a fluid flow such as a fan blade or a helicopter blade. Additionally, the
DSLJ insert has a discrete direction and distribution set at manufacture, which
both allows and requires that it be finely tuned to target specific vibration modes
by orienting it in different directions. On the contrary, CLDs produce identical
damping responses in all directions of the surface onto which it is bonded.

The modelling approach used herein has been shown to be sufficiently
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accurate. Evidence presented in Chapter 3 shows that the models were derived
correctly, for instance similar modal loss factors, mode shapes and natural
frequencies were obtained both numerically and analytically. Similar verification
tests have been carried out by other researchers on their models, see for ex-
ample [83]. The amplitude responses of sandwich panels damped with DSLJ
dampers and CLDs were also compared against experimental data, see Chap-
ter 7. Satisfactory agreement in the evolution of modal loss factors before and
adding the dampers was observed between the experimental measurements
and the numerical predictions, showing the pertinence of the finite element
model. The apparent differences in absolute modal loss factor between simu-
lations and experiments are likely due to manufacturing imperfections which
introduced additional structural damping and to the epoxy layer, which was not
modelled numerically. It is also commonly accepted that numerical models
tend to underestimate the modal loss factors in damped structures, especially
when using the modal strain energy method [173, 286]. Commercially avail-
able honeycomb sandwich panel systems manufactured for use in aerospace
applications are made to much higher specifications than those in this work.
CLDs are used in such commercial systems because they provide significant
damping enhancement. The DSLJ if similarly deployed in commercial systems
would likely demonstrate significant benefits, much more so than is apparent
in the experimental data which is dominated by the structural damping of the
imperfect honeycomb panels.

The premise of the work in this thesis was that the DSLJ damper could be
made more weight-efficient than existing alternatives such as the CLD. Opti-
mised DSLJ configurations were shown to be competitive and very often better
than published optimised CLD configurations in terms of additional weight re-
quired to achieving a given damping effect, see Chapter 4 Table 4.3. The higher
efficiency of the DSLJ damper vs the CLD was also shown experimentally, see
Chapter 7 Table 7.4. The reason for this is that the DSLJ exploits the damping
material more effectively than the CLD does, constraining the viscoelastic mate-
rial to higher shear strains for a given thickness of the viscoelastic layer, see
Chapter 3 Figures 3.15 and 3.16. In essence the DSLJ, or indeed a single lap
joint version of this, has both rigid elements at the boundary of the damping
material to displace under global vibration, whereas the CLD configuration has
only one rigid element displacing.

One of the main characteristics of the DSLJ damper is that it is a discrete
damper whose damping response changes depending on its orientation in the
host structure. Consequently, an evident question to investigate was to identify
the optimal location and orientation of such dampers in the host structure
which produces the highest damping-to-mass ratio. In this problem the decision
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parameters (i.e. the location and orientation of the dampers) are coupled with
the quality measures of the optimiser (i.e. mass and modal loss factor). If not
accounted for, such coupling may have detrimental effects on the performance
of the optimisation technique adopted. Therefore, a decision must be made
whether to use a simple and quick approach but one prone to errors arising
from veering or a more sophisticated and robust but computationally demanding
evolutionary optimiser (see Chapters 5 and 6). Other works in the literature have
optimised the design of passive damper using parametric methods but have
also neglected the effects of mode veering [89, 179]. Optimisation problems
where decision parameters are coupled with the objective functions to be
minimised include any topological optimisation problems where the structural
properties of the system – especially its strength, stiffness and mass – are
directly dependant on the decision to remove or not a given part of material
in the structure. These structural properties must be dynamically updated
during the optimisation process. The particular damping device used here is
quite new, but the distributions of dampers identified and the suitability of the
optimisation approaches (i.e parametric studies and evolutionary algorithms)
may well be generic to any passive or even active discrete damper, such as
pairs of piezoelectric actuators and sensors.

There is a move across the entire transport sector towards lightweighting,
driven mainly by customer and legislative pressure for fuel efficiency. A solution
put forward by the transport sector – and especially the aerospace industry –
has been to use composites and in some cases honeycomb cored composite
skinned sandwich panels. However, these industrial sectors are expected to
face increasing problems associated with structural vibrations in such lightweight
slender and stiff structures. Optimisation methods such as the ones used herein
may find use in identifying compromise solutions for such problems.

8.2 Recommendations for future work

Although the finite element model in Chapter 3 and onwards did not aim at
providing precise estimate of the dynamic properties of the structures consid-
ered, it could be refined in order to represent the damping behaviour of the
structures with more fidelity. Such refinements would include modelling epoxy
layers, delaminations during manufacture, metal-metal frictional contacts, and
the double thickness of the honeycomb walls. More sophisticated techniques to
estimate the modal loss factor could also be employed, such as the anelastic
displacement fields, the iterative modal strain energy method or the Golla-
Hugues-McTavish model [313]. The modal strain energy method used here is
computationally simple but may be inaccurate, especially for highly damped
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structures. It also does not include the temperature and frequency dependence
of viscoelastic materials. However for comparative purposes, such as those in
this work, this method yields satisfactory results.

Enhancements for CLD dampers have been suggested (see literature review
in Chapter 2). Similarly, the design of the DSLJ could be modified to magnify
shear in the viscoelastic material. For instance, the damping performance
of triple or quadruple lap joint constructs could be investigated. The DSLJ
concept could also be adapted to other structures where relative motion of
two or more parts occurs, for instance by constraining viscoelastic material
between two concentric cylinders rotating in out-of-phase fashion. A combined
DSLJ-CLD – consisting of a cellular solid filled with DSLJ damper that can be
bonded on the surface of a vibrating host structure – could be considered but it
would face severe cost penalty compared to a traditional CLD. Additionally, it
could be interesting to use active elements such as piezoceramics or electro or
magnetostrictive materials in order to magnify the shear strain in the viscoelastic
material i.e. a hybrid DSLJ damper.

The performance of other heuristic set-based optimisation algorithms for
tackling this problem could also be investigated further. Examples of such
algorithms include the Strength Pareto Evolutionary Algorithm-II (SPEA-II),
the Pareto Archived Evolutionary Strategy (PAES), Non-dominated Sorting
Genetic Algorithm-II (NSGA-II) and cellular automaton. The manufacturing
process of the sandwich panels and the DSLJ damper should be automated in
order to limit the imperfections in the structures, thereby diminishing the effect
of the structural damping introduced by such imperfections. Using additive
layer manufacturing could help mitigating the relative motion at the interface
of loosely assembled parts, generating artificial extra structural damping. Non-
contact measurement techniques such as using a scanning laser vibrometer
or other full-field measurement techniques could also enhance the quality of
the measurements. Finally, alternative excitation methods could attenuate the
effect of mass loading caused by the bonding of a load cell onto the structure,
for instance using an impulse hammer or non-contact magnetic exciters such
as Eddy current actuators.
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Appendix A

Modal Strain Energy method

The Modal Strain Energy (MSE) method described by Johnson and Kienholtz
[28] is used to estimate the modal loss factor of a viscoelastically damped
system. This method assumes that the energy dissipated in a damped system
depends only on the strain energy of the undamped system. Such system is
characterised by a complex stiffness matrix, eigenvalues and eigenvectors and
the Rayleigh quotient 2.12 can be generalised in complex:

λ∗k =
{Φ∗k}T [K∗]{Φ∗k}
{Φ∗k}T [M ]{Φ∗k}

(A.1)

where

[K∗] = [KR] + j[KI ]

{Φ∗k} = {ΦR
k }+ j{ΦI

k}
λ∗k = λRk + jλIk

(A.2)

The MSE method assumes that the eigenvector is approximately represented
by its real part, i.e. {Φ∗k} ' {ΦR

k }. The modal loss factor of mode k is defined as
ηk =

λIk
λRk

. Substituting Equation A.1 into A.2 yields:

λRk (1 + jηk) '
{ΦR

k }T [KR]{ΦR
k }

{ΦR
k }T [M ]{ΦR

k }
+ j
{ΦR

k }T [KI ]{ΦR
k }

{ΦR
k }T [M ]{ΦR

k }
(A.3)

Equating the real and imaginary parts of both sides of this equations gives:

λRk =
{ΦR

k }T [KR]{ΦR
k }

{ΦR
k }T [M ]{ΦR

k }

λRk ηk =
{ΦR

k }T [KI ]{ΦR
k }

{ΦR
k }T [M ]{ΦR

k }

(A.4)
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This can be expressed as:

ηk =
{ΦR

k }T [KI ]{ΦR
k }

{ΦR
k }T [KR]{ΦR

k }
(A.5)

The damped systems considered in this thesis are constituted of elastic and
viscoelastic materials characterised by different material loss factors. The
contribution of each material can be isolated by separating the stiffness matrix
in terms its real elastic and complex viscoelastic part: [K] = [Ke] + [K∗

v ]. The
complex viscoelastic stiffness matrix can be expressed as: [K∗

v ] = [KR
v ]+ j[KI

v ].
Since only the imaginary part of [K∗

v ] contributes to the imaginary part of the
global stiffness matrix, [KI ] = [KI

v ]. If m is the number of different materials in
the structure, [KI

v ] and [KR] can be expressed as follows:

[KI
v ] =

m∑
i=1

ηi,k[K
R
v,i] (A.6)

[KR] =
m∑
i=1

[KR
i ] (A.7)

where ηi,k is the material loss factor of material i in mode k. Substituting this
expression in equation A.5 gives,

ηk =

∑m
i=1 ηi,k{ΦR

k }T [KR
v,i]{ΦR

k }∑m
i=1{ΦR

k }T [KR
i ]{ΦR

k }
(A.8)

The modal strain energy of material i in mode k is defined as Ui,k = 1
2
{ΦR

k }T [Ki,k]{ΦR
k }.

Substituting this expression in the previous equation yields:

ηk =

∑m
i=1 ηi,kUi,k
Utot

(A.9)

where Utot is the strain energy in the whole structure.
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Appendix B

Finite element model

The finite element model of the honeycomb-cored sandwich structure with DSLJ
inserts described in Chapter 3 was implemented using ANSYS Parametric
Design Language (APDL):

!*******************************************************************************

! Ansys APDL macro "honeycomb_sandwich.mac": free and forced vibration response

! of a honeycomb-cored sandwich structure damped with optimised configurations

! DSLJ dampers

! arg1 = string describing the coundary condition (’FREE’, ’CFFF’, ’SSSS’)

! arg2 = string describing the damping configuration (’dslj1’, ’dslj2’,

! ’cld’, ’none’)

! arg3 = string describing the orientation (’orient1’, ’orient2’)

! arg4 = string describing the location of the forced excitation (’middle’,

! ’corner’)

! arg5 = string describing the location of the output displacement (’tip’,

! ’corner’, ’corner2’)

! This macro may be called using the following command:

! *use,ansys_macro.mac,arg1,arg2,arg3,arg4,arg5

!*******************************************************************************

FINISH

/CLEAR,start

/NERR,,1000000

! File parameters

!*******************************************************************************

BC = arg1

damping = arg2

orientation = arg3

excite = arg4

measure = arg5

name = ’%BC%_%damping%_%excite%_%measure%’

/FILNAME, name

! Honeycomb cell geometry parameters

!*******************************************************************************

PI = acos(-1)

l = 0.01

h = 0.01

t = 0.0002

theta = 30

x1al = h/2+l*sin(theta*PI/180)
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x2al = h/2

y2al = l*cos(theta*PI/180)

x15al = h+l*sin(theta*PI/180)

d_y = 2*l*cos(theta*PI/180)

d_x = 2*l*sin(theta*PI/180)+2*h

! DSLJ insert geometry parameters

!*******************************************************************************

avisco_tot = 0.00001

avisco = avisco_tot/2

a1 = tan(theta*PI/180)/2

b1 = -x1al

c1 = avisco/4

del1 = sqrt(b1*b1-4*a1*c1)

tlig = (-b1-del1)/(2*a1)

alpha = atan(y2al/x2al)*180/PI

! Sandwich panel geometry parameters

!*******************************************************************************

*IF,orientation,eq,’orient1’,then

nb_cell_X = 10

nb_cell_Y = 10

*ELSEIF,orientation,eq,’orient2’,then

nb_cell_X = 6

nb_cell_Y = 18

*ENDIF

nb_cells = nb_cell_Y*nb_cell_X+(nb_cell_Y-1)*(nb_cell_X-1)

depth = 0.01

l_panel = (nb_cell_X-1)*d_x+2*x15al

w_panel = (nb_cell_Y-1)*d_y+2*y2al

tablig =

*DIM, tablig, array, nb_cells,1

! Materials parameters

!*******************************************************************************

! Viscoelastic material

n_vem = 0.3

E_vem = 8.7e6

nu_vem = 0.45

vem_dens = 1100

! Aluminium

n_alu = 0.0001

E_al = 7e10

nu_al = 0.3

al_dens = 2700

! Modal analysis parameters

!*******************************************************************************

! nb_modes must be >6 in the case of free boundary condition (rigid body modes)

nb_modes = 10

! Skip the rigid body modes (first 6 modes) under free boundary conditions

*IF,BC,eq,’FREE’,then

start_mode = 7

*ELSE

start_mode = 1
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*ENDIF

! Harmonic analysis parameters

!*******************************************************************************

f_min = 0

f_max = 4000

nstep = 12800

P = 13

!*******************************************************************************

! PRE PROCESSING

!*******************************************************************************

/PREP7

! Element and material properties

!*******************************************************************************

ET,1,SHELL181

R,1,t

MP,EX,1,E_al

MP,EY,1,E_al

MP,EZ,1,E_al

MP,NUXY,1,nu_al

MP,NUYZ,1,nu_al

MP,NUXZ,1,nu_al

MP,dens,1,al_dens

MP,DMPR,1,n_alu/2

ET,2,SOLID185

! Enhanced strain formulation

KEYOPT,2,2,2

MP,EX,2,E_vem

MP,EY,2,E_vem

MP,EZ,2,E_vem

MP,NUXY,2,nu_vem

MP,NUYZ,2,nu_vem

MP,NUXZ,2,nu_vem

MP,dens,2,vem_dens

MP,DMPR,2,n_vem/2

! Honeycomb cell modelling

!*******************************************************************************

K,1,x1al,0,0

K,2,x2al,y2al,0

K,3,-x2al,y2al,0

K,4,-x1al,0,0

K,5,-x2al,-y2al,0

K,6,x2al,-y2al,0

K,7,x15al,,0

K,8,-x15al,,0

K,10,0,0,0

K,11,0,0,depth

K,12,0,0,depth/10+2*depth

K,13,0,0,9*depth/10+2*depth

K,14,x1al,0,depth/10

K,15,-x1al,0,depth/10
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L,10,11

L,1,2

,2,3

,3,4

,4,5

,5,6

,6,1

,7,1

,4,8

L,12,13

ADRAG,2,3,4,5,6,7,1

ADRAG,8,,,,,,1

ADRAG,9,,,,,,1

! Modelling of DSLJ attachments at cell corner

!*******************************************************************************

K,1000,x1al-tlig*tan(theta*PI/180),tlig,depth/10

K,1001,x1al-tlig*tan(theta*PI/180),-tlig,depth/10

K,1002,x1al+tlig/cos(theta*PI/180),0,depth/10

K,1003,x1al,0,depth/10

K,1004,-(x1al-tlig*tan(theta*PI/180)),tlig,depth/10

K,1005,-(x1al-tlig*tan(theta*PI/180)),-tlig,depth/10

K,1006,-(x1al+tlig/cos(theta*PI/180)),0,depth/10

K,1007,-x1al,0,depth/10

K,1008,x2al+tlig*tan(theta*PI/180),y2al-tlig,depth/10

K,1009,x2al-tlig/cos(theta*PI/180),y2al,depth/10

K,1010,x2al,y2al,depth/10

K,1011,x2al+tlig*tan(theta*PI/180),-(y2al-tlig),depth/10

K,1012,x2al-tlig/cos(theta*PI/180),-y2al,depth/10

K,1013,x2al,-y2al,depth/10

K,1014,-(x2al+tlig*tan(theta*PI/180)),y2al-tlig,depth/10

K,1015,-(x2al-tlig/cos(theta*PI/180)),y2al,depth/10

K,1016,-x2al,y2al,depth/10

K,1017,-(x2al+tlig*tan(theta*PI/180)),-(y2al-tlig),depth/10

K,1018,-(x2al-tlig/cos(theta*PI/180)),-y2al,depth/10

K,1019,-x2al,-y2al,depth/10

L,1003,1000

L,1003,1001

L,1003,1002

L,1007,1004

L,1007,1005

L,1007,1006

L,1010,1008

L,1010,1009

L,1013,1011

L,1013,1012

L,1016,1014

L,1016,1015

L,1019,1017

L,1019,1018
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*DO,i,29,42

ADRAG,i,,,,,,10

*ENDDO

! Skins modelling

!*******************************************************************************

*GET,kp_xmin,kp,0,mnloc,x

*GET,kp_xmax,kp,0,mxloc,x

*GET,kp_ymin,kp,0,mnloc,y

*GET,kp_ymax,kp,0,mxloc,y

*GET,kp_zmin,kp,0,mnloc,z

*GET,kp_zmax,kp,0,mxloc,z

K,1050,kp_xmin,kp_ymin

K,1051,kp_xmax,kp_ymin

K,1052,kp_xmax,kp_ymax

K,1053,kp_xmin,kp_ymax

A,1050,1051,1052,1053

ASEL,s,loc,z,0

AGEN,2,all,,,,,depth

ALLSEL,all

! Unit cell meshing

!*******************************************************************************

AOVLAP,all

ESIZE,l/3

TYPE,1

MAT,1

AMESH,all

ASEL,s,,,all

CM, honey, area

ALLSEL,all

! Create group sup_lig

!*******************************************************************************

K,1020,x1al-3*tlig*tan(theta*PI/180),-tlig,depth/10+depth

K,1021,x1al-3*tlig*tan(theta*PI/180),tlig,depth/10+depth

K,1022,x1al-3*tlig*tan(theta*PI/180),0,depth/10+depth

K,1023,-(x1al-3*tlig*tan(theta*PI/180)),0,depth/10+depth

K,1024,x1al,0,depth/10+depth

K,1025,-(x1al-tlig*tan(theta*PI/180)),tlig,depth/10+depth

K,1026,-(x1al-tlig*tan(theta*PI/180)),-tlig,depth/10+depth

K,1027,-(x1al-3*tlig*tan(theta*PI/180)),tlig,depth/10+depth

K,1028,-(x1al-3*tlig*tan(theta*PI/180)),-tlig,depth/10+depth

K,1029,-(x1al-3*tlig*tan(theta*PI/180)),tlig,9*depth/10+depth

K,1030,-(x1al-3*tlig*tan(theta*PI/180)),-tlig,9*depth/10+depth

L,1024,1022

L,1022,1023

L,1025,1021

L,1026,1020

ADRAG,12,,,,,,10

ADRAG,13,,,,,,10

ADRAG,15,,,,,,10

ADRAG,17,,,,,,10
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ASEL,s,loc,z,depth+depth/10,depth*2

CM, sup_lig, area

AMESH,all

ALLSEL,all

CSYS, 1

AGEN,2,sup_lig,,,,alpha,depth

CSYS, 0

ASEL,s,loc,z,depth*2,depth*3

CM, sup_lig2, area

ALLSEL,all

CSYS, 1

AGEN,2,sup_lig2,,,,-2*alpha,depth

CSYS, 0

ASEL,s,loc,z,depth*3,depth*4

CM, sup_lig3, area

ALLSEL,all

! Create group visco_i

!*******************************************************************************

V,1027,1029,29,1023,1021,35,27,1022

V,1023,29,1030,1028,1022,27,43,1020

! DSLJ meshing

!*******************************************************************************

TYPE,2

MAT,2

VSEL,s,,,all

CM, visco_i, volu

VMESH,all

ALLSEL,all

CSYS, 1

VGEN,2,visco_i,,,,alpha,depth

CSYS, 0

VSEL,s,loc,z,depth*2,depth*3

CM, visco_i2, volu

ALLSEL,all

CSYS, 1

VGEN,2,visco_i2,,,,-2*alpha,depth

CSYS, 0

VSEL,s,loc,z,depth*3,depth*4

CM, visco_i3, volu

ALLSEL,all

/UIS, MSGPOP, 3

! Cell + support ligament generation

!*******************************************************************************

*IF,damping,eq,’dslj1’,then

*VREAD,tablig(1),lig_f1,txt

(e2.0)

*ELSEIF,damping,eq,’dslj2’,then

*VREAD,tablig(1),lig_f2,txt
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(e2.0)

*ELSE

*VREAD,tablig(1),lig_none,txt

(e2.0)

*ENDIF

row_x = 1

row_y = 1

sum_lig = 0

*DO,i,1,nb_cells

! "even" cells

*IF,i,le,nb_cell_X*nb_cell_Y,then

*IF,row_y,gt,nb_cell_Y,then

row_x = row_x+1

row_y = 1

*ENDIF

lig_value = tablig(i)

sum_lig = sum_lig+lig_value

*IF,lig_value,eq,1,then

AGEN,2,sup_lig,,,(row_x-1)*d_x,(row_y-1)*d_y,-depth,,,,0

VGEN,2,visco_i,,,(row_x-1)*d_x,(row_y-1)*d_y,-depth,,,,0

*ENDIF

*IF,lig_value,eq,2,then

AGEN,2,sup_lig2,,,(row_x-1)*d_x,(row_y-1)*d_y,-2*depth,,,,0

VGEN,2,visco_i2,,,(row_x-1)*d_x,(row_y-1)*d_y,-2*depth,,,,0

*ENDIF

*IF,lig_value,eq,3,then

AGEN,2,sup_lig3,,,(row_x-1)*d_x,(row_y-1)*d_y,-3*depth,,,,0

VGEN,2,visco_i3,,,(row_x-1)*d_x,(row_y-1)*d_y,-3*depth,,,,0

*ENDIF

AGEN,2,honey,,,(row_x-1)*d_x,(row_y-1)*d_y,,,0

! "odd" cells

*ELSE

*IF,i,eq,nb_cell_X*nb_cell_Y+1,then

row_x = 1

row_y = 1

*ENDIF

*IF,row_y,gt,nb_cell_Y-1,then

row_x = row_x+1

row_y = 1

*ENDIF

lig_value = tablig(i)

sum_lig = sum_lig+lig_value

*IF,lig_value,eq,1,then

AGEN,2,sup_lig,,,(row_x-1)*d_x+x1al+x2al,(row_y-1)*d_y+y2al,-depth,,,,0

VGEN,2,visco_i,,,(row_x-1)*d_x+x1al+x2al,(row_y-1)*d_y+y2al,-depth,,,,0

*ENDIF

*IF,lig_value,eq,2,then

AGEN,2,sup_lig2,,,(row_x-1)*d_x+x1al+x2al,(row_y-1)*d_y+y2al,-2*depth,,,,0

VGEN,2,visco_i2,,,(row_x-1)*d_x+x1al+x2al,(row_y-1)*d_y+y2al,-2*depth,,,,0
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*ENDIF

*IF,lig_value,eq,3,then

AGEN,2,sup_lig3,,,(row_x-1)*d_x+x1al+x2al,(row_y-1)*d_y+y2al,-3*depth,,,,0

VGEN,2,visco_i3,,,(row_x-1)*d_x+x1al+x2al,(row_y-1)*d_y+y2al,-3*depth,,,,0

*ENDIF

*ENDIF

row_y = row_y+1

*ENDDO

! Clear and delete original unit cell and DSLJ

!*******************************************************************************

ACLEAR,honey

ACLEAR,honey,,,1

VCLEAR,visco_i,,,1

VCLEAR,visco_i2,,,1

VCLEAR,visco_i3,,,1

VDELE,visco_i,,,1

VDELE,visco_i2,,,1

VDELE,visco_i3,,,1

ACLEAR,sup_lig

ACLEAR,sup_lig2

ACLEAR,sup_lig3

ADELE,sup_lig,,,1

ADELE,sup_lig2,,,1

ADELE,sup_lig3,,,1

ACLEAR,58

ACLEAR,69

ADELE,58

ADELE,69

ALLSEL,all

CPINTF,ALL,0.0001

/UIS, MSGPOP, 2

*get,n_xmin,node,0,mnloc,x

*get,n_xmax,node,0,mxloc,x

*get,n_ymin,node,0,mnloc,y

*get,n_ymax,node,0,mxloc,y

*get,n_zmin,node,0,mnloc,z

*get,n_zmax,node,0,mxloc,z

xmid = (n_xmax+n_xmin)/2

ymid = (n_ymax+n_ymin)/2

length = n_xmax-n_xmin

width = n_ymax-n_ymin

depth = n_zmax-n_zmin

!*******************************************************************************

! SOLVER

!*******************************************************************************

FINISH

/SOLU

! Modal analysis

!*******************************************************************************
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ANTYPE,2

MODOPT,LANPCG,nb_modes,,,,1

MXPAND,nb_modes,,,yes

MSAVE,ON

EQSLV,PCG

*IF,BC,eq,’CFFF’,and,orientation,eq,’orient1’,then

NSEL,s,loc,x,n_xmin

D,all,all,0

*ELSEIF,BC,eq,’CFFF’,and,orientation,eq,’orient2’,then

NSEL,s,loc,y,n_ymin

D,all,all,0

*ELSEIF,bc,eq,’SS’,OR,bc,eq,’SSSS’,then

nsel,s,loc,x,n_xmin

nsel,a,loc,x,n_xmax

nsel,u,loc,z,0.00001,depth*10

d,all,uz,0

d,all,ux,0

d,all,uy,0

*ENDIF

ALLSEL,all

SOLVE

FINISH

! Harmonic analysis

!*******************************************************************************

/SOLU

ANTYPE,3

HROPT,msup,nb_modes,,yes

MSAVE,ON

KBC,1

HARFRQ,f_min,f_max

NSUBST,nstep

SELTOL,5e-4

*IF,excite,eq,’middle’,then

NSEL,s,loc,z,n_zmin

NSEL,r,loc,x,xmid

NSEL,r,loc,y,ymid

*ELSEIF,orientation,eq,’orient1’,and,excite,eq,’tip’,then

NSEL,s,loc,z,n_zmin

NSEL,r,loc,x, n_xmax

NSEL,r,loc,y,ymid

*ELSEIF,orientation,eq,’orient2’,and,excite,eq,’tip’,then

NSEL,s,loc,z,n_zmin

NSEL,r,loc,x,xmid

NSEL,r,loc,y,n_ymin+y2al

*ELSEIF,excite,eq,’corner’,then

NSEL,s,loc,z,n_zmin

NSEL,r,loc,x,n_xmin

NSEL,r,loc,y,n_ymin

*ELSEIF,excite,eq,’corner2’,then

NSEL,s,loc,z,n_zmin

NSEL,r,loc,x,n_xmax

NSEL,r,loc,y,n_ymin

*ENDIF

SELTOL

F,all,fz,P

ALLSEL,all

SOLVE
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FINISH

!*******************************************************************************

! POST PROCESSING

!*******************************************************************************

/POST1

*CFOPEN,name,csv

*VWRITE,’mode number’,’frequency’,’loss Ansys’,’loss MSE’,’damping efficiency’

%C ,%C ,%C ,%C, %C

*CFCLOS

! Natural frequency

!*******************************************************************************

SET,,,,,,,start_mode

*DO,j,start_mode,nb_modes

*GET,freq%j%,mode,j,freq

! Participation factor and effective mass

!*******************************************************************************

*GET,pf_x,MODE,j,PFACT,,DIREC,X

*GET,pf_y,MODE,j,PFACT,,DIREC,Y

*GET,pf_z,MODE,j,PFACT,,DIREC,Z

*GET,pf_rotx,MODE,j,PFACT,,DIREC,ROTX

*GET,pf_roty,MODE,j,PFACT,,DIREC,ROTY

*GET,pf_rotz,MODE,j,PFACT,,DIREC,ROTZ

effm_x = pf_x**2

effm_y = pf_y**2

effm_z = pf_z**2

effm_rotx = pf_rotx**2

effm_roty = pf_roty**2

effm_rotz = pf_rotz**2

! Modal mass and modal stiffness

!*******************************************************************************

ETABLE,kene_,kene

SSUM

*GET,ke,ssum,,item,kene_

OMEGA = 2*PI*freq%j%

MODEMASS = 2*ke/omega**2

MODESTIFF = omega**2*modemass

! Modal loss factor (Modal Strain Energy method)

!*******************************************************************************

*IF,sum_lig,ne,0,then

ESEL,s,mat,,2

ETABLE,VOLU,VOLU

SSUM

*GET,vol_vem,SSUM,0,ITEM,VOLU

ETABLE,ERAS

mass_vem = vol_vem*vem_dens

ETABLE,SENE,SENE

SSUM

*GET,se_vem,SSUM,0,ITEM,SENE

ETABLE,ERAS

*ELSE
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vol_vem = 0

mass_vem = 0

se_vem = 0

*ENDIF

ESEL,s,mat,,1

ETABLE,VOLU,VOLU

SSUM

*GET,vol_al,SSUM,0,ITEM,VOLU

ETABLE,ERAS

mass_al = vol_al*al_dens

ETABLE,SENE,SENE

SSUM

*GET,se_al,SSUM,0,ITEM,SENE

ETABLE,ERAS

allsel,all

vol_tot = vol_vem+vol_al

mass_tot = mass_vem+mass_al

se_tot = se_vem+se_al

loss_MSE = (n_alu*se_al+n_vem*se_vem)/se_tot

effi = loss_MSE/mass_tot

*GET,damp_ratio,MODE,j,damp

loss_ANSYS = damp_ratio*2

*CFOPEN,name,csv,,append

*VWRITE,j,freq%j%,loss_ANSYS,loss_MSE,effi

%G, %G, %G, %G, %G

*CFCLOS

! Mode shapes

!*******************************************************************************

PLNSOL, U, Sum

/show,png,,,8

/PLOPTS,INFO,0

/PLOPTS,LEG1,0

/PLOPTS,LEG2,0

/PLOPTS,LEG3,0

/PLOPTS,FRAME,0

/PLOPTS,TITLE,0

/PLOPTS,MINM,0

/PLOPTS,FILE,0

/PLOPTS,WINS,0

/PLOPTS,WP,0

/PLOPTS,DATE,0

/RGB,INDEX,100,100,100, 0

/RGB,INDEX, 80, 80, 80,13

/RGB,INDEX, 60, 60, 60,14

/RGB,INDEX, 0, 0, 0,15

/TRIAD,off

/VIEW, 1, 1, 1, 1

/WINDOW,,-1,1.67,-1,1

/TYPE,,6

/EFACET,4

/COLOR,OUTL,15

/COLOR,wbak,0,1

/GRAPHICS,power

/GFILE,2400
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/REPLOT

/SHOW,CLOSE

SET,NEXT

*ENDDO

*CFOPEN,name,csv,,append

*VWRITE,’mass’,’length’,’width’,’depth’,’excitation’,’measure’

%C ,%C ,%C, %C, %C, %C

*VWRITE,mass_tot,length,width,depth,excite,measure

%G ,%G ,%G, %G, %C, %C

*CFCLOS

FINISH

! Frequency response function

!*******************************************************************************

/POST26

FILE,,rfrq

NUMVAR,200

*IF,orientation,eq,’orient1’,and,measure,eq,’tip’,then

n1 = node(n_xmax,ymid,n_zmin)

*ELSEIF,orientation,eq,’orient2’,and,measure,eq,’tip’,then

n1 = node(xmid,n_ymax,n_zmin)

*ELSEIF,measure,eq,’corner’,then

n1 = node(n_xmax,n_ymax,n_zmin)

*ENDIF

NSOL,2,n1,U,z,UZ_2

STORE,MERGE

par =

*DIM,par,array,nstep,2

VGET,par(1,1),1

REALVAR,3,2,,,REAL2

IMAGIN,4,2,,,IMAG2

PROD,5,3,3

PROD,6,4,4

ADD,5,5,6

SQRT,6,5,,,AMPL2

VGET,par(1,2),6

*cfopen,name,csv,,append

*vwrite,’freq’,’amplitude’

%C ,%C

*vwrite,par(1,1),par(1,2)

%G ,%G

*CFCLOS

PLVAR,2

/GROPT,LOGY,ON

/REPLOT

FINISH
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Appendix C

Parametric optimiser

The parametric opimisation procedure described in Chapter 5 was implemented
using ANSYS Parametric Design Language (APDL):

!*******************************************************************************

! Ansys APDL macro "parametric_optimisation.mac"

! returns the strain deformation in percent between all opposite vertices of

! all the honeycomb cells in the sandwich panel deformed under a specific

! mode shape

! This macro may be called as follows:

! *use,parametric_optimisation.mac,arg1

! arg1 = integer indicating the mode number

!*******************************************************************************

/POST1

SET,,,,,,,arg1

*CFOPEN,name,csv

*VWRITE,’node 1’,’node 2’,’initial dist’,’final dist’,’percent change’,’lig type’,’cell nb’

%C, %C, %C, %C, %C, %C, %C

*CFCLOS

row_x = 1

row_y = 1

cell_number = 1

*DO,i,1,nb_cells

! "even" cells

*IF,i,le,nb_cell_X*nb_cell_Y,then

*IF,row_y,gt,nb_cell_Y,then

row_x = row_x+1

row_y = 1

*ENDIF

! horizontal dslj

type_lig = 1

nd1 = node(x1al+2*x15al*(row_x-1),y2al*2*(row_y-1),depth)

nd1_loc_x = NX(nd1)

nd1_loc_y = NY(nd1)

nd1_loc_z = NZ(nd1)

d1_x = ux(nd1)

d1_y = uy(nd1)

d1_z = uz(nd1)

np1_x = d1_x+nd1_loc_x
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np1_y = d1_y+nd1_loc_y

np1_z = d1_z+nd1_loc_z

nd2 = node(-x1al+2*x15al*(row_x-1),y2al*2*(row_y-1),depth)

nd2_loc_x = NX(nd2)

nd2_loc_y = NY(nd2)

nd2_loc_z = NZ(nd2)

d2_x = ux(nd2)

d2_y = uy(nd2)

d2_z = uz(nd2)

np2_x = d2_x+nd2_loc_x

np2_y = d2_y+nd2_loc_y

np2_z = d2_z+nd2_loc_z

l_init = sqrt((nd2_loc_x-nd1_loc_x)**2+(nd2_loc_y-nd1_loc_y)**2+(nd2_loc_z-nd1_loc_z)**2)

l_fin = sqrt((np2_x-np1_x)**2+(np2_y-np1_y)**2+(np2_z-np1_z)**2)

percent_change = abs(l_init-l_fin)/l_init*100

*CFOPEN,name,csv,,append

*VWRITE,nd1,nd2,l_init,l_fin,percent_change,type_lig,cell_number

%G, %G, %G, %G, %G, %G, %G

*CFCLOS

! 60 degrees dslj

type_lig = 2

nd1 = node(x2al+2*x15al*(row_x-1),y2al*(2*row_y-1),depth)

nd1_loc_x = NX(nd1)

nd1_loc_y = NY(nd1)

nd1_loc_z = NZ(nd1)

d1_x = ux(nd1)

d1_y = uy(nd1)

d1_z = uz(nd1)

np1_x = d1_x+nd1_loc_x

np1_y = d1_y+nd1_loc_y

np1_z = d1_z+nd1_loc_z

nd2 = node(-x2al+2*x15al*(row_x-1),y2al*(2*row_y-3),depth)

nd2_loc_x = NX(nd2)

nd2_loc_y = NY(nd2)

nd2_loc_z = NZ(nd2)

d2_x = ux(nd2)

d2_y = uy(nd2)

d2_z = uz(nd2)

np2_x = d2_x+nd2_loc_x

np2_y = d2_y+nd2_loc_y

np2_z = d2_z+nd2_loc_z

l_init = sqrt((nd2_loc_x-nd1_loc_x)**2+(nd2_loc_y-nd1_loc_y)**2+(nd2_loc_z-nd1_loc_z)**2)

l_fin = sqrt((np2_x-np1_x)**2+(np2_y-np1_y)**2+(np2_z-np1_z)**2)

percent_change = abs(l_init-l_fin)/l_init*100

*CFOPEN,name,csv,,append

*VWRITE,nd1,nd2,l_init,l_fin,percent_change,type_lig,cell_number

%G, %G, %G, %G, %G, %G, %G

*CFCLOS

! -60 degrees dslj

type_lig = 3

nd1 = node(-x2al+2*x15al*(row_x-1),y2al*(2*row_y-1),depth)

nd1_loc_x = NX(nd1)

nd1_loc_y = NY(nd1)

nd1_loc_z = NZ(nd1)
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d1_x = ux(nd1)

d1_y = uy(nd1)

d1_z = uz(nd1)

np1_x = d1_x+nd1_loc_x

np1_y = d1_y+nd1_loc_y

np1_z = d1_z+nd1_loc_z

nd2 = node(x2al+2*x15al*(row_x-1),y2al*(2*row_y-3),depth)

nd2_loc_x = NX(nd2)

nd2_loc_y = NY(nd2)

nd2_loc_z = NZ(nd2)

d2_x = ux(nd2)

d2_y = uy(nd2)

d2_z = uz(nd2)

np2_x = d2_x+nd2_loc_x

np2_y = d2_y+nd2_loc_y

np2_z = d2_z+nd2_loc_z

l_init = sqrt((nd2_loc_x-nd1_loc_x)**2+(nd2_loc_y-nd1_loc_y)**2+(nd2_loc_z-nd1_loc_z)**2)

l_fin = sqrt((np2_x-np1_x)**2+(np2_y-np1_y)**2+(np2_z-np1_z)**2)

percent_change = abs(l_init-l_fin)/l_init*100

*CFOPEN,name,csv,,append

*VWRITE,nd1,nd2,l_init,l_fin,percent_change,type_lig,cell_number

%G, %G, %G, %G, %G, %G, %G

*CFCLOS

*ELSE

! odd cells

*IF,i,eq,nb_cell_X*nb_cell_Y+1,then

row_x=1

row_y=1

*ENDIF

*IF,row_y,gt,nb_cell_Y-1,then

row_x=row_x+1

row_y=1

*ENDIF

! horizontal dslj

type_lig = 1

nd1 = node(x1al+(2*row_x-1)*x15al,y2al*(2*row_y-1),depth)

nd1_loc_x = NX(nd1)

nd1_loc_y = NY(nd1)

nd1_loc_z = NZ(nd1)

d1_x = ux(nd1)

d1_y = uy(nd1)

d1_z = uz(nd1)

np1_x = d1_x+nd1_loc_x

np1_y = d1_y+nd1_loc_y

np1_z = d1_z+nd1_loc_z

nd2 = node(-x1al+(2*row_x-1)*x15al,y2al*(2*row_y-1),depth)

nd2_loc_x = NX(nd2)

nd2_loc_y = NY(nd2)

nd2_loc_z = NZ(nd2)

d2_x = ux(nd2)

d2_y = uy(nd2)

d2_z = uz(nd2)

np2_x = d2_x+nd2_loc_x

np2_y = d2_y+nd2_loc_y

np2_z = d2_z+nd2_loc_z
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l_init = sqrt((nd2_loc_x-nd1_loc_x)**2+(nd2_loc_y-nd1_loc_y)**2+(nd2_loc_z-nd1_loc_z)**2)

l_fin = sqrt((np2_x-np1_x)**2+(np2_y-np1_y)**2+(np2_z-np1_z)**2)

percent_change = abs(l_init-l_fin)/l_init*100

*CFOPEN,name,csv,,append

*VWRITE,nd1,nd2,l_init,l_fin,percent_change,type_lig,cell_number

%G, %G, %G, %G, %G, %G, %G

*CFCLOS

! 60 degrees dslj

type_lig = 2

nd1 = node(x2al+(2*row_x-1)*x15al,y2al*2*row_y,depth)

nd1_loc_x = NX(nd1)

nd1_loc_y = NY(nd1)

nd1_loc_z = NZ(nd1)

d1_x = ux(nd1)

d1_y = uy(nd1)

d1_z = uz(nd1)

np1_x = d1_x+nd1_loc_x

np1_y = d1_y+nd1_loc_y

np1_z = d1_z+nd1_loc_z

nd2 = node(x1al+2*x15al*(row_x-1),y2al*2*(row_y-1),depth)

nd2_loc_x = NX(nd2)

nd2_loc_y = NY(nd2)

nd2_loc_z = NZ(nd2)

d2_x = ux(nd2)

d2_y = uy(nd2)

d2_z = uz(nd2)

np2_x = d2_x+nd2_loc_x

np2_y = d2_y+nd2_loc_y

np2_z = d2_z+nd2_loc_z

l_init = sqrt((nd2_loc_x-nd1_loc_x)**2+(nd2_loc_y-nd1_loc_y)**2+(nd2_loc_z-nd1_loc_z)**2)

l_fin = sqrt((np2_x-np1_x)**2+(np2_y-np1_y)**2+(np2_z-np1_z)**2)

percent_change = abs(l_init-l_fin)/l_init*100

*CFOPEN,name,csv,,append

*VWRITE,nd1,nd2,l_init,l_fin,percent_change,type_lig,cell_number

%G, %G, %G, %G, %G, %G, %G

*CFCLOS

! -60 degrees dslj

type_lig = 3

nd1 = node(x1al+2*x15al*(row_x-1),y2al*2*row_y,depth)

nd1_loc_x = NX(nd1)

nd1_loc_y = NY(nd1)

nd1_loc_z = NZ(nd1)

d1_x = ux(nd1)

d1_y = uy(nd1)

d1_z = uz(nd1)

np1_x = d1_x+nd1_loc_x

np1_y = d1_y+nd1_loc_y

np1_z = d1_z+nd1_loc_z

nd2 = node(x2al+(2*row_x-1)*x15al,y2al*2*(row_y-1),depth)

nd2_loc_x = NX(nd2)

nd2_loc_y = NY(nd2)

nd2_loc_z = NZ(nd2)

d2_x = ux(nd2)

d2_y = uy(nd2)
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d2_z = uz(nd2)

np2_x = d2_x+nd2_loc_x

np2_y = d2_y+nd2_loc_y

np2_z = d2_z+nd2_loc_z

l_init = sqrt((nd2_loc_x-nd1_loc_x)**2+(nd2_loc_y-nd1_loc_y)**2+(nd2_loc_z-nd1_loc_z)**2)

l_fin = sqrt((np2_x-np1_x)**2+(np2_y-np1_y)**2+(np2_z-np1_z)**2)

percent_change = abs(l_init-l_fin)/l_init*100

*CFOPEN,name,csv,,append

*VWRITE,nd1,nd2,l_init,l_fin,percent_change,type_lig, cell_number

%G, %G, %G, %G, %G, %G, %G

*CFCLOS

*ENDIF

row_y = row_y+1

cell_number = cell_number+1

*ENDDO

FINISH

153



APPENDIX C. PARAMETRIC OPTIMISER

154



Appendix D

Evolutionary optimiser

The adaptive IBEA introduced by Zitzler and Künzli [304] and modified to
manipulate binary string representation, was implemented in the numerical
environment MATLAB. The initialisation of the search population and a reflection
symmetry operator was included to the original algorithm in an effort to increase
the convergence rate.

function [Archive,Archive_objectives, X, Xo, samples, samples_objectives,...

time_count] = IBEA_binary(pop_size, generations, type, cost_function, l, ...

num_obj, x_over_type, key, p_cross, p_reflect, p_mut, kappa, old_X, old_Xo, old_samples, old_samples_o)

% Implements the adaptive IBEA_epsilon+ algorithm described in 2004 PPSN paper by

% Zitzler and Kunzli, modified to manipulate binary string representation

%

% inputs:

% pop_size = number of members in search population

% generations = number of iterations of algorithm

% cost_function = string containing the name of the objective

% function to optimise, must take as arguments the decision vector

% followed by the number of objectives, and return an array (1 by

% D) of the D objectives evaluated

% type = ’CFFF2’ or ’FFFF2’ or ’CFFF1’ or ’FFFF1’ or ’CFFF3’ or ’FFFF3’

% l = number of decision parameters

% num_obj = number of objectives

% x_over_type = crossover type, 1 indicates single point, uniform otherwise

% key: if key = 1, no initial population, if key = 2, initial population is

% generated from the parametric optimisation, else, the initial

% population is generated from previous run with a ’samples’ history

% p_reflect = probability of reflected symmetry mutation (typically 0.1)

% p_mut (optional) = probability of bit flip mutation, will default to 1/l

% p_cross = probability of crossovers (typically 0.9)

% kappa (optinal) = discount factor for indicator, will default to 0.05

% old_X = archive output of pervious run -- set as empty set [] if you do

% not wish to restart from previous run

% old_Xo = archive objectives output of pervious run -- set as empty set []

% if you do not wish to restart from previous run

% old_samples = samples output of pervious run -- set as empty set [] if you do

% not wish to restart from previous run

% old_samples_o = samples objectives output of pervious run -- set as empty set []

% if you do not wish to restart from previous run

%

% returns:

%

% Archive = matrix of archive decision vectors

% Archive_objectives = matrix of archive member evaluations
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% samples = history of algorithm state in terms of its locations evaluated

% samples_objectives = corresponding objectives

% time_count = time elapsed (the index correspond to the samples index)

%

% (c) Jonathan Fieldsend, University of Exeter, 2014

p_mut_backup = p_mut;

if ~exist(’p_mut’,’var’)

p_mut = 1;

else

p_mut = ceil(p_mut*l);

end

% p_mut now holds the number of elements of a vector to flip each time

if ~exist(’kappa’,’var’)

kappa = 0.05;

end

% INITIALISATION

% generates an initial population of size pop_size

if ~exist(’old_X’,’var’)

old_X = [];

end

if ~exist(’old_Xo’,’var’)

old_Xo = [];

end

if ~exist(’old_samples’,’var’)

old_samples = [];

end

if ~exist(’old_samples_o’,’var’)

old_samples_o = [];

end

mating_pool = rand(pop_size,l);

offspring = rand(pop_size,l);

off_o = rand(pop_size,num_obj);

time_count = zeros((generations+1)*pop_size,1);

tic; % start elapsing time

[samples, samples_objectives, sample_index, X, Xo, time_count] = initialise(pop_size,...

key, generations, l, num_obj, type, cost_function, time_count, old_X, old_Xo, ...

old_samples, old_samples_o);

for kk=1:generations % loop for generations

% FITNESS ASSIGNMENT: scale objective and indicator values and use them

% to assign fitness value to the individual in the initial population

Xo_scaled = rescale_objectives(Xo);

[fitness,c] = fitness_assignment(Xo_scaled,kappa);

% ENVIRONMENTAL SELECTION

while size(X,1)>pop_size

% select the individual with the smallest fitness value = best

% individual !

[~,j] = min(fitness);

% remove it from the population and store its objectives in ty

X(j,:) =[];

ty = Xo_scaled(j,:);

Xo(j,:) = [];

Xo_scaled(j,:)=[];

fitness(j) = [];

% update fitness value of the remaining individuals

fitness = update_fitness(fitness,Xo_scaled,kappa,ty,c);
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end

% MATING SELECTION

for j=1:pop_size;

I=randperm(pop_size);

% binary tournament selection on fitness value with replacement

% in order to fill the temporary mating pool

if fitness(I(1))<fitness(I(2))

mating_pool(j,:)=X(I(1),:);

else

mating_pool(j,:)=X(I(2),:);

end

end

% VARIATION: apply crossover, mutation and symmetry reflection to the

% mating pool and add the resulting offspring to the main population

offspring = mating_pool;

% CROSSOVER

for j=1:2:pop_size-1;

c1 = mating_pool(j,:);

c2 = mating_pool(j+1,:);

if rand()<p_cross % crossover with p_cross probability

if x_over_type==1 % single point

k = randperm(l-1);

ks = k(1);

c1 (ks+1:end) = mating_pool(j+1,ks+1:end);

c2 (ks+1:end) = mating_pool(j,ks+1:end);

else % uniform

k = randperm(l);

% uniformly random selected elements, crossover 50%

uni_I = k(1:ceil(length(k)/2));

c1 (uni_I) = mating_pool(j+1,uni_I);

c2 (uni_I) = mating_pool(j,uni_I);

end

end % otherwise children are direct copies of parents

offspring(j,:) = c1;

offspring(j+1,:) = c2;

end

% BIT FLIP MUTATION

for j=1:pop_size;

k=randperm(l);

% randomly bitflip p_mut elements

offspring(j,k(1:p_mut))=abs(offspring(j,k(1:p_mut))-1);

end

% SYMMETRY REFLECTION

rows = 10;

cols = 19;

I = randperm(pop_size);

if p_reflect ~= 0

for i=1:floor(pop_size*p_reflect)

sym_index = I(i);

sym_vector_int = bin2int(offspring(sym_index,:));

% if CFFF2, perform a horizontal reflection

if strcmp(type,’CFFF1’) || strcmp(type,’CFFF2’) || strcmp(type,’CFFF3’)

sym_vector_int = reflect_solution(sym_vector_int, rows, cols, 1);

% if FFFF2, alternate between vertical and horizontal reflection

elseif strcmp(type,’FFFF1’) || strcmp(type,’FFFF2’) || strcmp(type,’FFFF3’)

sym_vector_int = reflect_solution(sym_vector_int, rows, cols, floor(rand(1)*2));

end
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offspring(sym_index,:) = int2bin(sym_vector_int);

end

end

% add offspring to population

for i=1:pop_size

% evaluate offpsring objectives

off_o(i,:) = feval(cost_function,offspring(i,:),num_obj,type);

% add offspring to population

samples(sample_index,:) = offspring(i,:);

samples_objectives(sample_index,:) = off_o(i,:);

time_count(sample_index) = toc;

sample_index = sample_index+1;

end

if rem(kk,10)==0

fprintf(’Iteration %d, Evaluation %d\n’,kk,kk*pop_size+pop_size);

end

Xo = [Xo; off_o];

X = [X; offspring];

end

% TERMINATION

I = pareto_front_with_duplicates(samples_objectives);

Archive = samples(I,:);

Archive_objectives = samples_objectives(I,:);

%-----------------------------------------------------------------------------

function [samples, samples_objectives, sample_index, X, Xo,time_count] = initialise(pop_size,...

key, generations, l, num_obj, type, cost_function, time_count, old_X, old_Xo, old_samples, old_samples_o)

% no initial population

if key == 1

samples = zeros((generations+1)*pop_size,l);

samples_objectives = zeros((generations+1)*pop_size,num_obj);

% declare archive and associated objective evaluations as empty

% Create random indiviual (Uniform) bits and evaluate

X = floor(rand(pop_size,l)*2);

Xo = zeros(pop_size,num_obj);

for i=1:pop_size

Xo(i,:) = feval(cost_function,X(i,:),num_obj,type);

time_count(i) = toc;

end

samples(1:pop_size,:) = X;

samples_objectives(1:pop_size,:) = Xo;

sample_index = pop_size+1;

% if the initial population is created from the parametric optimisation

elseif key == 2

X = old_X;

Xo = old_Xo;

if size(X,1) < pop_size

temp_length = size(X,1);

% if fewer than pop_size from parametric optimisation, then fill

% out rest of the serach population with random solutions

X = [X; floor(rand(pop_size-temp_length,l)*2)];

Xo = [Xo; zeros(pop_size-temp_length,num_obj)];

for i=temp_length:pop_size
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Xo(i,:) = feval(cost_function,X(i,:),num_obj,type);

time_count(i) = toc;

end

end

samples = zeros(generations*pop_size+size(X,1),l);

samples_objectives = zeros(generations*pop_size+size(Xo,1),num_obj);

samples(1:size(X,1),:) = X;

samples_objectives(1:size(Xo,1),:) = Xo;

sample_index = size(X,1)+1;

% if initial population is created from previous run with a ’sample’ history

else

if size(old_X,1) ~= 2*pop_size

error(’old population size does not match the population size now being used...

-- the old population should be twice the pop_size argument’);

end

X = old_X;

Xo = old_Xo;

samples = [old_samples; zeros(generations*pop_size+size(X,1),l)];

samples_objectives = [old_samples_o; zeros(generations*pop_size+size(Xo,1),num_obj)];

sample_index = size(old_samples,1);

samples(sample_index+1:sample_index+size(X,1),:) = X;

samples_objectives(sample_index+1:sample_index+size(Xo,1),:) = Xo;

sample_index = sample_index+size(Xo,1)+1;

end

%-----------------------------------------------------------------------------

function Xo_scaled = rescale_objectives(Xo)

% rescale each objectives to the interval [0,1]

n = size(Xo,1);

upb = max(Xo);

lwb = min(Xo);

Xo_scaled = (Xo-repmat(lwb,n,1))./repmat(upb-lwb,n,1);

%-----------------------------------------------------------------------------

function [fitness,c] = fitness_assignment(Xo,kappa)

[n,m] = size(Xo);

fitness = zeros(n,1);

indicator = zeros(n,n);

for i=1:n

for j=1:n

if i~=j

indicator(i,j) = max(Xo(i,:)-Xo(j,:)); % get shift value

%fitness(i) = fitness(i) -exp(-indicator/kappa);

end

end

end

c =max(max(indicator));

for j=1:n

fitness(j) = sum(-exp(-indicator(:,j)/(c*kappa)));

end

%-----------------------------------------------------------------------------
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function fitness = update_fitness(fitness,Xo,kappa,old_val,c)

[n,m] = size(Xo);

for i=1:n

indicator = max(old_val-Xo(i,:)); % get shift value

fitness(i) = fitness(i) + exp(-indicator/(c*kappa));

end

%-----------------------------------------------------------------------------

function new_solution_vector = reflect_solution(solution_vector, rows, cols, orientation)

% new_solution_vector = reflect_solution(solution_vector, rows, columns, orientation)

%

% function reflects the solution vector either reflecting through the

% vertical or horizontal axis once the solution_vector is converted back to

% its underlying 2D form (comprising hexagonal cells)

%

% solution_vector = vector representing solution, contents of each element

% either 0, 1, 2 or 3 indicating if element unused, or if used the

% orientation of the insert. Total number of elements should be rows * cols

% - floor(cols/2), and error check will assrt this.

%

% rows, columns = number of rows and columns the solution represents

% 10 rows and 19 columns for orientation 1 and 18 rows by 11 columns for

% orientation 2. The ’rows’ term is the maximum (as alternate

% columns of cells will have rows and row-1 elements).

%

% In mapping the first part of the vector is mapping ’even solutions’ --

% i.e. those in columns with an even number of rows and the second part

% ’odd solutions’, those in columns with an odd number of rows

%

% orientation = reflection through vertical line (0) or horizontal line

% (argument not 0)

if min(size(solution_vector)) ~= 1

error(’solution_vector argument must be a vector!’)

end

if length(solution_vector) ~= (rows*cols) - floor(cols/2)

error(’solution_vector is wrong length, cannot be mapped to a 2D plane of hexagonal cells’);

end

if (rem(cols/2,2)==0) && (orientation ==0)

error(’There must be an odd number of columns when reflecting through the vertical line’);

end

if orientation == 0

% reflect through vertical line

new_solution_vector = vertical_reflection(solution_vector, rows, cols);

else

% reflect through horizontal line

new_solution_vector = horizontal_reflection(solution_vector, rows, cols);

end

%-----------------------------------------------------------------------------

function new_solution_vector = vertical_reflection(solution_vector, rows, cols)

r = rand()>0.5; % random draw, do we reflect left to right, or right to left?

new_solution_vector = solution_vector;

% process the ’even’ chunk

num_even_cols = floor((cols+1)/2);

to_swap = floor(num_even_cols)/2;

for i = 1:to_swap

if (r == 0)

I = (i-1)*rows+(1:rows);

II = (num_even_cols-1)*rows+(1:rows);
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else

II = (i-1)*rows+(1:rows);

I = (num_even_cols-1)*rows+(1:rows);

end

new_solution_vector(I) = solution_vector(II);

I2 = find(new_solution_vector(I)==2);

I3 = find(new_solution_vector(I)==3);

new_solution_vector(I(I2)) = 3;

new_solution_vector(I(I3)) = 2;

num_even_cols = num_even_cols - 1;

end

offset = floor((cols+1)/2)*rows;

% process the ’odd chunk’

num_odd_cols = floor((cols-1)/2);

to_swap = floor(num_odd_cols)/2;

srows = rows-1;

for i = 1:to_swap

if (r == 0)

I = (i-1)*srows+offset+(1:srows);

II = (num_odd_cols-1)*srows+offset+(1:srows);

else

II = (i-1)*srows+offset+(1:srows);

I = (num_odd_cols-1)*srows+offset+(1:srows);

end

new_solution_vector(I) = solution_vector(II);

I2 = find(new_solution_vector(I)==2);

I3 = find(new_solution_vector(I)==3);

new_solution_vector(I(I2)) = 3;

new_solution_vector(I(I3)) = 2;

num_odd_cols = num_odd_cols - 1;

end

%-----------------------------------------------------------------------------

function new_solution_vector = horizontal_reflection(solution_vector, rows, cols)

r = rand()>0.5; % random draw, do we reflect top to bottom, or bottom to top?

new_solution_vector = solution_vector;

% process the ’even’ chunk

num_even_cols = floor((cols+1)/2);

to_swap = floor(rows/2);

for i = 1:num_even_cols

if (r == 0)

I = rows*(i-1) + (1:to_swap);

II = rows*(i-1) + (rows:-1:rows-(to_swap-1));

else

II = rows*(i-1) + (1:to_swap);

I = rows*(i-1) + (rows:-1:rows-(to_swap-1));

end

new_solution_vector(I) = solution_vector(II);

I2 = find(new_solution_vector(I)==2);

I3 = find(new_solution_vector(I)==3);

new_solution_vector(I(I2)) = 3;

new_solution_vector(I(I3)) = 2;

end

offset = floor((cols+1)/2)*rows;

% process the ’odd chunk’

num_odd_cols = floor((cols-1)/2);

to_swap = floor(rows-1)/2;

srows = rows - 1;

for i = 1:num_odd_cols

if (r == 0)
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I = offset + srows*(i-1) + (1:to_swap);

II = offset + srows*(i-1) + (srows:-1:srows-(to_swap-1));

else

II = offset + srows*(i-1) + (1:to_swap);

I = offset + srows*(i-1) + (srows:-1:srows-(to_swap-1));

end

new_solution_vector(I) = solution_vector(II);

I2 = find(new_solution_vector(I)==2);

I3 = find(new_solution_vector(I)==3);

new_solution_vector(I(I2)) = 3;

new_solution_vector(I(I3)) = 2;

end

%-----------------------------------------------------------------------------

function [indices] = pareto_front_with_duplicates(Y)

% Y = A n by m matrix of objectives, where m is the number of objectives

% and n is the number of points

%

% copes with duplicates

% assumes minimisation

% returns indices (array which contains the indices of the dominating

% individuals

[n,m] = size(Y);

S = zeros(n,1);

% S is an n-long list of 0 and 1

% if S(i)=1: the ith item dominate the population ie both of its objectives

% are >= than the rest of the population AND at least 1 of its objective is

% > than the rest of the population

for i=1:n

% get number of points that dominate Y

S(i) = sum((sum(Y<=repmat(Y(i,:),n,1),2) == m) & (sum(Y<repmat(Y(i,:),n,1),2) > 0));

end

indices = find(S==0);

%-----------------------------------------------------------------------------

function x = int2bin(y)

% convert an array of integers (less or equal than 3) to the corresponding

% array of binary numbers

% y is an array of integers

x = zeros(1,length(y)*2);

j = 1;

for i = 1:length(y)

if y(i) == 1

j = j+1;

x(j) = 1;

j = j+1;

elseif y(i) == 2

x(j) = 1;

j = j+2;

elseif y(i) == 3;

x(j) = 1;

j = j+1;

x(j) = 1;

j = j+1;

else

j = j+2;

end

end

%-----------------------------------------------------------------------------
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function x = bin2int(y)

% convert an array of binary number to the corresponding array of integers

% (less or equal to 3)

% y is an array of binary

if rem(length(y),2)~=0

error(’The array of binary number must have an even number of elements’)

end

n = length(y);

x = zeros(1,n/2);

j=1;

for i=1:2:n-1

x(j) = y(i)*2+y(i+1);

j=j+1;

end

%-----------------------------------------------------------------------------

function [a,ao]=create_initial_archive(n, type)

% create initial archive based on the parametric optimisation

% n = population size of the initial population (typically: 20)

% type = ’CFFF2’ or ’FREE2’ or ’CFFF1’ or ’FREE1’

for i=1:n

b = load(strcat(type,’/init_pop/mlig_’,int2str(i),’.txt’));

a(i,:) = int2bin(b’);

b = load(strcat(type,’/init_pop/obj1_loss_’,int2str(i),’.txt’));

c = load(strcat(type,’/init_pop/obj2_mass_’,int2str(i),’.txt’));

ao(i,:) = [-b, c];

end

end

%-----------------------------------------------------------------------------

function [a,ao]=create_initial_archive(n, type)

% create initial archive based on the parametric optimisation

% n = population size of the initial population (typically: 20)

% type = ’CFFF3’ or ’FREE3’

for i=1:n

b = load(strcat(type,’/init_pop3/mlig_’,int2str(i),’.txt’));

a(i,:) = int2bin(b’);

b = load(strcat(type,’/init_pop3/obj1_loss_’,int2str(i),’.txt’));

c = load(strcat(type,’/init_pop3/obj2_loss_’,int2str(i),’.txt’));

d = load(strcat(type,’/init_pop3/obj3_mass_’,int2str(i),’.txt’));

ao(i,:) = [-b, -c, d];

end

end

%-----------------------------------------------------------------------------

function y = ansys_fit2(x,m,type)

% x = decision vector (X(i,:) in IBEA)

% m = number of objectives (must be = 2 here)

% type = string defining the cost function (’CFFF2’ or ’FREE2’ or ’CFFF1’ or ’FREE1’)

if m~=2

error(’Function only works with two objectives’);

end

y = zeros(1,2);

x = bin2int(x);
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fid=fopen(strcat(type,’_lig.txt’),’w’);

fprintf(fid,’%d\n’,x);

fclose(fid);

% open Ansys with input file

system(strcat(’"/usr/local/ansys_inc/v160/ansys/bin/ansys160" -p aa_r -np 16 -dir...

"/scratch/pa269/new_IBEA" -j "’,type,’" -s read -l en-us -b nolist...

< "/scratch/pa269/new_IBEA/’,type,’.inp" ’))

fid=fopen(strcat(type,’_loss1.txt’),’r’);

y(1)= -(fscanf(fid,’%f’));

fclose(fid);

fid=fopen(strcat(type,’_mass2.txt’),’r’);

y(2) = fscanf(fid,’%f’);

fclose(fid);

%-----------------------------------------------------------------------------

function y = ansys_fit3(x,m,type)

% x = decision vector (X(i,:) in IBEA)

% m = number of objectives (must be = 2 here)

% type = string defining the cost function (’CFFF3’ or ’FREE3’)

if m~=3

error(’Function only works with three objectives’);

end

y = zeros(1,3);

x = bin2int(x);

fid=fopen(strcat(type,’_lig.txt’),’w’);

fprintf(fid,’%d\n’,x);

fclose(fid);

% open Ansys with input file

system(strcat(’"/usr/local/ansys_inc/v160/ansys/bin/ansys160" -p aa_r -np 16 -dir...

"/scratch/pa269/new_IBEA" -j "’,type,’" -s read -l en-us -b nolist...

< "/scratch/pa269/new_IBEA/’,type,’.inp" ’))

fid=fopen(strcat(type,’_loss1.txt’),’r’);

y(1)= -(fscanf(fid,’%f’));

fclose(fid);

fid=fopen(strcat(type,’_loss2.txt’),’r’);

y(2)= -(fscanf(fid,’%f’));

fclose(fid);

fid=fopen(strcat(type,’_mass3.txt’),’r’);

y(3) = fscanf(fid,’%f’);

fclose(fid);
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[125] L. Rouleau, J.-F. Deü, A. Legay, and J.-F. Sigrist. Vibro-acoustic study of
a viscoelastic sandwich ring immersed in water. Journal of Sound and
Vibration, 331(3):522–539, jan 2012.

[126] M. D. Rao, R. Echempati, and S. Nadella. Dynamic analysis and damping
of composite structures embedded with viscoelastic layers. Composites
Part B: Engineering, 28(5-6):547–554, jan 1997.

[127] J. A. Zapfe and G. A. Lesieutre. A discrete layer beam finite element for
the dynamic analysis of composite sandwich beams with integral damping
layers. Computers & Structures, 70(6):647–666, mar 1999.

[128] M. Ganapathi, B. P. Patel, P. Boisse, and O. Polit. Flexural loss factors
of sandwich and laminated composite beams using linear and nonlinear
dynamic analysis. Composites Part B: Engineering, 30(3):245–256, apr
1999.

[129] S. H. Zhang and H. L. Chen. A study on the damping characteristics
of laminated composites with integral viscoelastic layers. Composite
Structures, 74(1):63–69, jul 2006.

[130] V. Pradeep, N. Ganesan, and K. Bhaskar. Vibration and thermal buck-
ling of composite sandwich beams with viscoelastic core. Composite
Structures, 81(1):60–69, nov 2007.

[131] H. Arvin, M. Sadighi, and A. R. Ohadi. A numerical study of free and
forced vibration of composite sandwich beam with viscoelastic core. Com-
posite Structures, 92(4):996–1008, mar 2010.

[132] S. Assaf. Finite Element Vibration Analysis of Damped Composite Sand-
wich Beams. International Journal of Acoustics and Vibration, 16(4):163–
172, 2011.

175



BIBLIOGRAPHY

[133] S. Ghinet and N. Atalla. Modeling thick composite laminate and sandwich
structures with linear viscoelastic damping. Computers & Structures,
89(15–16):1547–1561, aug 2011.

[134] A. Fereidoon, A. Ghoddosian, and A. A. Niyari. Non-Linear Damping
Analysis of Sandwich Composite Structures. Contemporary Engineering
Sciences, 4(1):37–42, 2011.

[135] A. Fereidoon and A. H. Niyari. Investigation of the nonlinear behaviour of
damping of aluminum foam core sandwich composite beams. Journal of
Reinforced Plastics and Composites, 31(9):639–653, may 2012.

[136] H. Arvin. Frequency response analysis of higher order composite sand-
wich beams with viscoelastic core. IJST, Transactions of Mechanical
Engineering, 38:143–155, 2014.

[137] B. Hu. Finite element analysis of damped vibrations of laminated com-
posite plates. PhD thesis, nov 1992.

[138] D. P. Makhecha, M. Ganapathi, and B. P. Patel. Vibration and damp-
ing analysis of laminated/sandwich composite plates using higher-order
theory. Journal of Reinforced Plastics and Composites, 21(6):559–575,
2002.

[139] E. Manconi and B. R. Mace. Estimation of the loss factor of viscoelastic
laminated panels from finite element analysis. Journal of Sound and
Vibration, 329(19):3928–3939, sep 2010.

[140] R. A. S. Moreira and J. D. Rodrigues. Static and dynamic analysis of soft
core sandwich panels with through-thickness deformation. Composite
Structures, 92(2):201–215, jan 2010.

[141] A. L. Araujo, C. M. Mota Soares, and C. A. Mota Soares. A viscoelastic
finite element model for the analysis of passive damping in anisotropic
laminated sandwich structures. In 8th International Conference on Sand-
wich Structures, pages 865–876, 2008.

[142] A. L. Araujo, C. M. Mota Soares, and C. A. Mota Soares. A Viscoelastic
Sandwich Finite Element Model for the Analysis of Passive, Active and
Hybrid Structures. Applied Composite Materials, 17(5):529–542, oct
2010.

[143] A. L. Araujo, C. M. Mota Soares, C. A. Mota Soares, and J. Herskovits.
Material identification of viscoelastic core materials in sandwich structures.
In International Conference on Engineering Optimization, 2012.

176



BIBLIOGRAPHY

[144] A. Chate, R. Rikards, and A. Korjakin. Analysis of free damped vibra-
tions of laminated composite cylindrical shells. Mechanics of Composite
Materials, 31(5):474–484, 1996.

[145] M. L. Soni and F. K. Bogner. Finite Element Vibration Analysis of Damped
Structures. AIAA Journal, 20(5):700–707, may 1982.
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